
数据仓库架构设计的一点概念
1、数据仓库所处环节
在一个成体系、结构化的数据应用场景下,数据和处理有四个层次: 操作层、数据仓库层、部门/数据集市层、个体层。
操作层
操作层是指为具体业务提供实时响应的各个业务系统,比如常见的订单系统、ERP、用户中心等等具体业务系统,这些系统中的数据一般都是存入关系型数据库。它们是数据的来源。
数据仓库收集操作层各个业务系统中的数据,进行统一格式、统一计量单位,规整有序地组织在一起,为数据分析、数据挖掘等需求提供数据支持。
部门/数据集市层是各个部门根据自己的数据分析需求,从数据仓库中抽取自己部门所关心的数据报表。
个体层
个体层中的不同角色个体有读取不同数据的权限。
2、数据仓库概念
数据仓库是一个面向主题的、集成的、非易失的、随时间变化的,用来支持管理人员决策的数据集合,数据仓库中包含了粒度化的企业数据。
面向主题的
数据仓库不同于传统的操作型系统,传统的操作型系统中的数据是围绕功能进行组织的,而数据仓库是针对于某一个主题进行分析数据用的,比如针对于销售主题、针对于客户主题等等。
集成的
不同产品或者系统中的数据是分散在各自系统中的,并且格式不一致、计量单位不一致。而数据仓库必须将多个分散的数据统一为一致的、无歧义的数据格式后,并解决了命名冲突、计量单位不一致等问题,然后将数据整合在一起,才能称这个数据仓库是集成的。
随时间变化的
数据仓库要体现出数据随时间变化的情况,并且可以反映在过去某一个时间点上数据是什么样子的,也就是随时间变化的含义。而传统的操作型系统,只能保存当前数据,体现当前的情况。
非易失的
非易失是指:数据一旦进入数据仓库,就不能再被改变了,当在操作型系统中把数据改变后,再进入数据仓库就会产生新的记录。这样数据仓库就保留了数据变化的轨迹。
3、一般架构
1、 STAGE层
业务系统的数据接入到数据仓库时,首先将业务数据仓储到STAGE层中,Stage层作为一个临时缓冲区,并屏蔽对业务系统的干扰。
STAGE层中的表结构和数据定义一般与业务系统保持一致。
Stage中的数据可以每次全量接入也可以每次增量接入,一般都有会数据老化的机制,不用长期保存。
Stage的数据不会对外部开放。
2、 ODS层
ODS才是数据仓库真正意义上的基础数据,数据是被清洗过的,ODS层的数据是定义统一的、可以体现历史的、被长期保存的数据。
ODS层的数据粒度与Stage层数据粒度是一致的。
Stage层中的数据是完全形式的源数据,需要进行清洗才能进入ODS层,所以说ODS层是数据仓库格式规整的基础数据,为上层服务。
3、 MDS层
MDS是数据仓库中间层,数据是以主题域划分的,并根据业务进行数据关联形成宽表,但是不对数据进行聚合处理,MDS层数据为数据仓库的上层的统计、分析、挖掘和应用提供直接支持。
MDS层的数据也可以执行一定的老化策略。
4、 ADS层
ADS层是数据仓库的应用层,一般以业务线或者部门划分库。这一层可以为各个业务线创建一个数据库。
ADS层的数据是基于MDS层数据生成的业务报表数据,可以直接作为数据仓库的输出导出到外部的操作型系统中(MySQL、MSSQL、Hbase、Elasticsearch等)。
5、 DIM层
DIM层是数据仓库数据中,各层公用的维度数据。比如:省市县数据。
6、 ETL调度系统
对接入数据仓库的数据进行清洗、数据仓库各层间数据流转都需要大量的程序任务来操作,这些任务一般都是定时的,并且之间都是有前后依赖关系的,为了能保证任务的有序执行,就需要一个ETL调度系统来管理。
7、 元数据管理系统
描述数据的数据叫做元数据,元数据信息一般包括表名、表描述信息、所在数据库、表结构、存储位置等基本信息,另外还有表之间的血缘关系信息、每天的增量信息、表结构修改记录信息等等。
数据仓库中有大量的表,元数据管理系统就是用来收集、存储、查询数据仓库中元数据的工具,这个系统为数据使用方提供了极大的便利。
4、设计的两个重要问题1、 粒度
粒度是指数据仓库中数据单元的细节程度或综合程度的级别。粒度会深刻地影响数据量的大小以及数据仓库的查询能力。
细节程度越高,粒度级别就越低,查询就越灵活;相反,细节程度越低,粒度级别就越高。
双重粒度:
双重粒度是存储两个粒度下的数据:一个是全量的细节数据;另一个是轻度综合的数据。
2、 分区
数据分区是指把数据分散到可独立处理的分离物理单元中去。恰当地进行分区可以给数据仓库带来多个方面的好处:
(1) 数据装载 (2) 数据访问 (3) 数据存档 (4) 数据删除 (5) 数据监控 (6) 数据存储
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19