京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业数据挖掘实际运用的模型
这是好几年前写的一篇文章,今天突然翻出来看到,我觉得对于很多在做数据挖掘的朋友有一定参考。
听了几位从公司几位同事和外面专家介绍关于数据挖掘、数据模型的一些东西。总的来说,很有收获,当然收获并不在具体的技术细节上。更多是在看法,理念上。
我以前也搞过很多模型,从最基本的聚类、决策树、logisitic、回归分析、生存分析、神经网络,还有市场调研中一些联合分析、感知分析、因子分析/主成分分析,当然还有更高级一点的结构方程。在期货公司呆的一年中,还搞过计量模型:ARMA簇、ARCH簇、VaR等,当时对自己产生的模型,感觉很不自信。因为当时的模型识别率指标(例如:R方,并没有达到传说中在学校做论文或者平时玩模型的90%以上),感觉这个模型就是不好的,并不完美。
去年抱着学习的心态,去一家数据量极其丰富的互联网公司,想去看看大公司玩数据到什么程度,虽然以前和许多牛人们交流过,但当时一直觉得应该不是这么简单。
到新公司后同几位做modeling的同事和听了外部专家的演讲,某种程度上我释然的。感觉自己以前在做模型的时候,更多是在做学术研究一样,也许和我是一个追求完美的人有关。
例如:模型成立的假设条件,与变量选择。
模型的假设条件,对数据的分布要求;
模型的变量选择,以及变量的各种预处理;
针对最终的目的理论上可以使用的模型,都去尝试。比如:会员流失问题:决策树、逻辑回归、生存分析,我都会去尝试使用,根据其最终的LIFT值最大的,然后选择。
但实际上,从几位同事与朋友的介绍来看,逻辑回归是许多公司是都在用的模型,
为什么不用更“高级”,更先进的模型呢?原因有二个:
第一个:模型的健壮性。这些模型都是被之前实践证明是最好的,或者性能相对来说最稳定的。衡量的指标不外乎:稳定性、可解释性(这点在商业很重要)、简单性。
第二个:商业运用,已经是流程式的过程,不会轻易去改变,就是你生产线上一样。模型的轻微改变可以要牵动许多方面,是一个大工程。
从与他们的交流来说,我好像忘记了一个东西:这些都是为商业服务的,商业过程不要太复杂,最好的商业模式往往是最简单,不是吗?
我的观点:也许和自己的工作经历有关,但是我觉得对于一个数据分析师或者是数据建模师来说,虽然你用的很简单。但是你掌握的东西应该很多,很复杂,也正是因为有这些基础,你才能选择最好的模型,所以在玩数据挖掘或者数学建模为商业服务的时候,经验很重要,当然这些专业知识的扎实也是最根本的之一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05