
企业数据挖掘实际运用的模型
这是好几年前写的一篇文章,今天突然翻出来看到,我觉得对于很多在做数据挖掘的朋友有一定参考。
听了几位从公司几位同事和外面专家介绍关于数据挖掘、数据模型的一些东西。总的来说,很有收获,当然收获并不在具体的技术细节上。更多是在看法,理念上。
我以前也搞过很多模型,从最基本的聚类、决策树、logisitic、回归分析、生存分析、神经网络,还有市场调研中一些联合分析、感知分析、因子分析/主成分分析,当然还有更高级一点的结构方程。在期货公司呆的一年中,还搞过计量模型:ARMA簇、ARCH簇、VaR等,当时对自己产生的模型,感觉很不自信。因为当时的模型识别率指标(例如:R方,并没有达到传说中在学校做论文或者平时玩模型的90%以上),感觉这个模型就是不好的,并不完美。
去年抱着学习的心态,去一家数据量极其丰富的互联网公司,想去看看大公司玩数据到什么程度,虽然以前和许多牛人们交流过,但当时一直觉得应该不是这么简单。
到新公司后同几位做modeling的同事和听了外部专家的演讲,某种程度上我释然的。感觉自己以前在做模型的时候,更多是在做学术研究一样,也许和我是一个追求完美的人有关。
例如:模型成立的假设条件,与变量选择。
模型的假设条件,对数据的分布要求;
模型的变量选择,以及变量的各种预处理;
针对最终的目的理论上可以使用的模型,都去尝试。比如:会员流失问题:决策树、逻辑回归、生存分析,我都会去尝试使用,根据其最终的LIFT值最大的,然后选择。
但实际上,从几位同事与朋友的介绍来看,逻辑回归是许多公司是都在用的模型,
为什么不用更“高级”,更先进的模型呢?原因有二个:
第一个:模型的健壮性。这些模型都是被之前实践证明是最好的,或者性能相对来说最稳定的。衡量的指标不外乎:稳定性、可解释性(这点在商业很重要)、简单性。
第二个:商业运用,已经是流程式的过程,不会轻易去改变,就是你生产线上一样。模型的轻微改变可以要牵动许多方面,是一个大工程。
从与他们的交流来说,我好像忘记了一个东西:这些都是为商业服务的,商业过程不要太复杂,最好的商业模式往往是最简单,不是吗?
我的观点:也许和自己的工作经历有关,但是我觉得对于一个数据分析师或者是数据建模师来说,虽然你用的很简单。但是你掌握的东西应该很多,很复杂,也正是因为有这些基础,你才能选择最好的模型,所以在玩数据挖掘或者数学建模为商业服务的时候,经验很重要,当然这些专业知识的扎实也是最根本的之一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19