京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习:竞争优势的新探索
为了获得更广泛的数据分析和数据理解,提高内部、外部流程效率,对用户有更好的理解,增强自身竞争力。越来越多的公司实施机器学习战略。
编译:T客汇 卿云
最近,MIT技术评论定制和Google Cloud完成了一项名为《机器学习:竞争优势的新探索》调查,发现:
●2017年50%的公司希望通过机器学习可以更好的理解客户
●48%的企业认为机器学习能够增加自身竞争力。
●未来机器学习的几大应用有自动化代理/机器人(42%),预测计划(41%),销售和营销目标(37%)还有智能助理(37%)。
报告关键观点如下:
如果公司正在使用机器学习,你想从中获得什么?
采用机器学习的公司,其中50%是为了寻求更广泛的数据分析和数据理解,如此能增强其核心业务。46%是为了增强企业优势提高竞争力,45%是为了更快的数据分析能力以及敏锐的洞察力;44%是为了提高研发能力,希望藉此推出新一代产品。
如果你的公司使用机器学习,你从中已经得到了什么?
正在使用机器学习的公司中,45%是为了更广泛的数据分析和数据理解。只有35%的公司是为了更快速的数据分析和敏锐的洞察力,除此之外也为了开发新一代产品而增强研发能力。下图比较了企业从机器学习中获得的好处。机器学习潜力的主要因素之一是面向服务的框架,这个框架通过设计同步实时消耗数据,但是无需移动数据。enosiX正在迅速成为这一领域的领导者,专注于同步实时Salesforce和SAP集成,使公司对数据有更好的理解,提供可衡量的优化意见。
2017年你的IT预算中有多少是专为机器学习的?
采用机器学习的公司中有26%公司在机器学习领域的投入超过了其用预算的15%。79%受访者正在投资机器学习。下图展现了调查期间2016年后期和2017年前期IT预算中机器学习的分布情况。
如果你的公司计划使用机器学习,你想从中寻求什么?
2017年50%的公司计划采用机器学习是为了更好的了解用户。48%是为了增加公司优势提高竞争力。45%是为了更广泛的数据分析和数据理解。下图是企业希望从机器学习中所获的收益。
自然语言处理(NLP)(49%),文本分类和挖掘(47%),情感/行为分析(47%)和图像识别、分类和标记(43%)是如今机器学习领域使用的前四大项目。目前正在进行的其他项目包括建议(42%),个性化(41%),数据安全(40%),风险分析(41%),在线搜索(41%)以及本地化和制图(39%)。 未来机器学习的最大用途包括自动化代理/机器人(42%),预测计划(41%),销售和营销目标(37%)以及智能助理(37%)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16