
大数据迁移的五大陷阱和风险
计算机系统之间的数据传输或存储格式从来就不是一个轻松的任务,特别是当它涉及结构化和非结构化的数据。
"复杂的数据迁移工作意味着超负荷运行和延迟都是很长常见的",Arvind Singh(以下简称辛格),芝加哥一家企业的数据解决方案提供商的联合创始人兼CEO表达了以上观点。
在《信息周刊》的一次电话采访中,Arvind Singh概述了10个常见的数据迁移问题,其中包括五个陷阱和五个风险,以此警告企业应该竭力避免。
大数据迁移的五大陷阱
陷阱#1:未能吸引业务线和业务用户开始。
当公司合并多个系统整合到一个--通常发生在兼并后--他们需要从确定正确的商业用途开始。
你需要确定谁知道和理解业务数据,"辛格说。
"谁是你业务的专家?这当然不是IT或系统集成商。"
换句话说,把那些数据使用精英搬进迁移项目。
毕竟,只有他们才能将那些操作系统玩转一旦上线。
陷阱#2:没有数据管理策略和组织结构。
"你已经将系统A的数据移动到系统B,但谁拥有管理结构?谁有权利在系统中创建、批准、编辑或删除数据?"辛格问。
还有一些问题必须解决:你设置了数据管理了吗?有一个业务流程来管理数据周期吗?另外,你有数据管理员在公司吗?
陷阱#3:在原始系统数据质量差。
公司经常意识不到一个"原有评估"是至关重要的数据迁移工作铺垫。
"了解原始系统里的数据的质量是一个巨大的陷阱,但企业常常不愿意花足够的时间,"辛格说。
必须要考虑的问题:现有的数据支持新用户吗?它缺少什么?你打算怎么做,你现在不能够做什么?
一个详细的评估让企业能够更容易地估计需要的工作量来成功地迁移原始数据。
陷阱#4:忽略验证和定义业务规则。
你公司的业务和验证规则可能不是最新的。
"难以让人相信一个公司在达成业务规则时花了多短的时间,更不用说确保数据符合业务规则,"辛格说。
"换句话说,你认为你有一个业务规则,但是你的现有数据是否匹配,细致,或遵循这个规定?"
此外,审计人员需要确保数据从原始系统到新的系统是有效的,特别是当这个迁移涉及关键信息,如金融、库存、和就业数据。
陷阱#5:未能验证和测试数据迁移过程。
不要以为这是最后一步了。
你绝对绝对要确保在整个过程中你一直在验证和测试,"辛格说。
必须要考虑的问题:你打算怎样测试数据?谁将测试和评估? 谁将签署它吗?以及谁将是数据的最终消费者?
“这一过程必须贯穿项目的始终,但不幸的是公司通常"不花足够的时间校准数据的测试和验证”辛格说。
大数据迁移的五大风险
风险#1:被委托进行数据迁移项目的员工缺乏实战经验。
一个公司的员工可能非常擅长他们所做的事,但这并不意味着他们是在数据管理、迁移和治理是专家。
"他们是数据的创作者和消费者,但是他们并不是完全熟练运用工具、过程、服务、模板和加速器,"辛格说。
风险#2:你的团队太依赖工具的开发工作。
这个问题往往是导致缺乏经验的员工。一个数据迁移项目通常是IT部门的事,但可能并没被专业训练过。迁移工具使用不当最终会迁移了错误数据。"这是类似于把垃圾传来传去,"辛格说。
你的目标,当然是快速、可靠地传输数据。重要的是你如何运用数据迁移工具,和"你搭配的有什么样的加速器和模板,"辛格说。
风险#3:交叉对象依赖性。
"我无法告诉你我有多少次坐在会议上,(客户)说,"我们刚刚发现了一个全新的资料来源,我们甚至都不知道自己需要移动的',"辛格说。
交叉对象依赖常常很晚才被发现。一个复杂的项目可能会有60、70、甚至80个不同的数据对象中来自一百个左右的应用程序。
"当我们与客户谈生意时,我们寻找丢失的数据块,或者相关数据,"辛格说。
事实上,交叉对象依赖性--并在后来发现新的数据来源的过程--是主要的风险,可以打乱你的迁移的时间表。
风险#4:试图在一个大的上传之后去上线。
这是一个灾难,辛格说,因为你在假设一切都是完美的,你将能够简单地点击一个按钮,和所有的数据将负载得完美无瑕。 "这是个很大的风险,"他说。"你需要一个项目时间轴,复杂的,长期的测试负载的道路。"
风险#5:预算超支由于不适当的范围或准备工作的欠缺。
这经常发生在,当一个组织认为它的系统集成商(SI)会照顾到这些细节。
"大多数系统集成商通常不处理数据只是说,'我将连接管道使原始数据移动到一个目标系统',"辛格说。
"在现实阶段,我们可以调用到数据迁移项目,"他说,"人们说:'看,数据没有捆绑在一起,我们无法进行用户测试。'"
这个问题,当然,会导致成本超支和毁坏的时间表。
如今IT
面临的最大挑战之一,是风险评估。风险的度量和影响评估不是一门确切的科学,而是有工具、过程和原理,可用于确保组织很好地被保护,高级管理层消息灵通。在我们的Measuring
Risk: A Security Pro's
Guide测量风险中:一个安全专业人员的指导报告中,我们推荐工具来评估安全风险和提供一些想法供有效地将结果数据投入到业务中去。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-06基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-06抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-06解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30