
大数据迁移的五大陷阱和风险
计算机系统之间的数据传输或存储格式从来就不是一个轻松的任务,特别是当它涉及结构化和非结构化的数据。
"复杂的数据迁移工作意味着超负荷运行和延迟都是很长常见的",Arvind Singh(以下简称辛格),芝加哥一家企业的数据解决方案提供商的联合创始人兼CEO表达了以上观点。
在《信息周刊》的一次电话采访中,Arvind Singh概述了10个常见的数据迁移问题,其中包括五个陷阱和五个风险,以此警告企业应该竭力避免。
大数据迁移的五大陷阱
陷阱#1:未能吸引业务线和业务用户开始。
当公司合并多个系统整合到一个--通常发生在兼并后--他们需要从确定正确的商业用途开始。
你需要确定谁知道和理解业务数据,"辛格说。
"谁是你业务的专家?这当然不是IT或系统集成商。"
换句话说,把那些数据使用精英搬进迁移项目。
毕竟,只有他们才能将那些操作系统玩转一旦上线。
陷阱#2:没有数据管理策略和组织结构。
"你已经将系统A的数据移动到系统B,但谁拥有管理结构?谁有权利在系统中创建、批准、编辑或删除数据?"辛格问。
还有一些问题必须解决:你设置了数据管理了吗?有一个业务流程来管理数据周期吗?另外,你有数据管理员在公司吗?
陷阱#3:在原始系统数据质量差。
公司经常意识不到一个"原有评估"是至关重要的数据迁移工作铺垫。
"了解原始系统里的数据的质量是一个巨大的陷阱,但企业常常不愿意花足够的时间,"辛格说。
必须要考虑的问题:现有的数据支持新用户吗?它缺少什么?你打算怎么做,你现在不能够做什么?
一个详细的评估让企业能够更容易地估计需要的工作量来成功地迁移原始数据。
陷阱#4:忽略验证和定义业务规则。
你公司的业务和验证规则可能不是最新的。
"难以让人相信一个公司在达成业务规则时花了多短的时间,更不用说确保数据符合业务规则,"辛格说。
"换句话说,你认为你有一个业务规则,但是你的现有数据是否匹配,细致,或遵循这个规定?"
此外,审计人员需要确保数据从原始系统到新的系统是有效的,特别是当这个迁移涉及关键信息,如金融、库存、和就业数据。
陷阱#5:未能验证和测试数据迁移过程。
不要以为这是最后一步了。
你绝对绝对要确保在整个过程中你一直在验证和测试,"辛格说。
必须要考虑的问题:你打算怎样测试数据?谁将测试和评估? 谁将签署它吗?以及谁将是数据的最终消费者?
“这一过程必须贯穿项目的始终,但不幸的是公司通常"不花足够的时间校准数据的测试和验证”辛格说。
大数据迁移的五大风险
风险#1:被委托进行数据迁移项目的员工缺乏实战经验。
一个公司的员工可能非常擅长他们所做的事,但这并不意味着他们是在数据管理、迁移和治理是专家。
"他们是数据的创作者和消费者,但是他们并不是完全熟练运用工具、过程、服务、模板和加速器,"辛格说。
风险#2:你的团队太依赖工具的开发工作。
这个问题往往是导致缺乏经验的员工。一个数据迁移项目通常是IT部门的事,但可能并没被专业训练过。迁移工具使用不当最终会迁移了错误数据。"这是类似于把垃圾传来传去,"辛格说。
你的目标,当然是快速、可靠地传输数据。重要的是你如何运用数据迁移工具,和"你搭配的有什么样的加速器和模板,"辛格说。
风险#3:交叉对象依赖性。
"我无法告诉你我有多少次坐在会议上,(客户)说,"我们刚刚发现了一个全新的资料来源,我们甚至都不知道自己需要移动的',"辛格说。
交叉对象依赖常常很晚才被发现。一个复杂的项目可能会有60、70、甚至80个不同的数据对象中来自一百个左右的应用程序。
"当我们与客户谈生意时,我们寻找丢失的数据块,或者相关数据,"辛格说。
事实上,交叉对象依赖性--并在后来发现新的数据来源的过程--是主要的风险,可以打乱你的迁移的时间表。
风险#4:试图在一个大的上传之后去上线。
这是一个灾难,辛格说,因为你在假设一切都是完美的,你将能够简单地点击一个按钮,和所有的数据将负载得完美无瑕。 "这是个很大的风险,"他说。"你需要一个项目时间轴,复杂的,长期的测试负载的道路。"
风险#5:预算超支由于不适当的范围或准备工作的欠缺。
这经常发生在,当一个组织认为它的系统集成商(SI)会照顾到这些细节。
"大多数系统集成商通常不处理数据只是说,'我将连接管道使原始数据移动到一个目标系统',"辛格说。
"在现实阶段,我们可以调用到数据迁移项目,"他说,"人们说:'看,数据没有捆绑在一起,我们无法进行用户测试。'"
这个问题,当然,会导致成本超支和毁坏的时间表。
如今IT
面临的最大挑战之一,是风险评估。风险的度量和影响评估不是一门确切的科学,而是有工具、过程和原理,可用于确保组织很好地被保护,高级管理层消息灵通。在我们的Measuring
Risk: A Security Pro's
Guide测量风险中:一个安全专业人员的指导报告中,我们推荐工具来评估安全风险和提供一些想法供有效地将结果数据投入到业务中去。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16