京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何对混合型数据做聚类分析
利用聚类分析,我们可以很容易地看清数据集中样本的分布情况。以往介绍聚类分析的文章中通常只介绍如何处理连续型变量,这些文字并没有过多地介绍如何处理混合型数据(如同时包含连续型变量、名义型变量和顺序型变量的数据)。本文将利用 Gower 距离、PAM(partitioning around medoids)算法和轮廓系数来介绍如何对混合型数据做聚类分析。
R语言
本文主要分为三个部分:
距离计算
聚类算法的选择
聚类个数的选择
为了介绍方便,本文直接使用 ISLR 包中的 College 数据集。该数据集包含了自 1995 年以来美国大学的 777 条数据,其中主要有以下几个变量:
连续型变量
录取率
学费
新生数量
分类型变量
公立或私立院校
是否为高水平院校,即所有新生中毕业于排名前 10% 高中的新生数量占比是否大于 50%
本文中涉及到的R包有:
In [3]:
set.seed(1680) # 设置随机种子,使得本文结果具有可重现性
library(dplyr)
library(ISLR)
library(cluster)
library(Rtsne)
library(ggplot2)
Attaching package: ‘dplyr’
The following objects are masked from ‘package:stats’:
filter, lag
The following objects are masked from ‘package:base’:
intersect, setdiff, setequal, union
构建聚类模型之前,我们需要做一些数据清洗工作:
录取率等于录取人数除以总申请人数
判断某个学校是否为高水平院校,需要根据该学校的所有新生中毕业于排名前 10% 高中的新生数量占比是否大于 50% 来决定
In [5]:
college_clean <- College %>%
mutate(name = row.names(.),
accept_rate = Accept/Apps,
isElite = cut(Top10perc,
breaks = c(0, 50, 100),
labels = c("Not Elite", "Elite"),
include.lowest = TRUE)) %>%
mutate(isElite = factor(isElite)) %>%
select(name, accept_rate, Outstate, Enroll,
Grad.Rate, Private, isElite)
glimpse(college_clean)
Observations: 777
Variables: 7
$ name (chr) "Abilene Christian University", "Adelphi University", "...
$ accept_rate (dbl) 0.7421687, 0.8801464, 0.7682073, 0.8369305, 0.7564767, ...
$ Outstate (dbl) 7440, 12280, 11250, 12960, 7560, 13500, 13290, 13868, 1...
$ Enroll (dbl) 721, 512, 336, 137, 55, 158, 103, 489, 227, 172, 472, 4...
$ Grad.Rate (dbl) 60, 56, 54, 59, 15, 55, 63, 73, 80, 52, 73, 76, 74, 68,...
$ Private (fctr) Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes,...
$ isElite (fctr) Not Elite, Not Elite, Not Elite, Elite, Not Elite, Not...
距离计算
聚类分析的第一步是定义样本之间距离的度量方法,最常用的距离度量方法是欧式距离。然而欧氏距离只适用于连续型变量,所以本文将采用另外一种距离度量方法—— Gower 距离。
Gower 距离
Gower 距离的定义非常简单。首先每个类型的变量都有特殊的距离度量方法,而且该方法会将变量标准化到[0,1]之间。接下来,利用加权线性组合的方法来计算最终的距离矩阵。不同类型变量的计算方法如下所示:
连续型变量:利用归一化的曼哈顿距离
顺序型变量:首先将变量按顺序排列,然后利用经过特殊调整的曼哈顿距离
名义型变量:首先将包含 k 个类别的变量转换成 k 个 0-1 变量,然后利用 Dice 系数做进一步的计算
优点:通俗易懂且计算方便
缺点:非常容易受无标准化的连续型变量异常值影响,所以数据转换过程必不可少;该方法需要耗费较大的内存
利用 daisy 函数,我们只需要一行代码就可以计算出 Gower 距离。需要注意的是,由于新生入学人数是右偏变量,我们需要对其做对数转换。daisy 函数内置了对数转换的功能,你可以调用帮助文档来获取更多的参数说明。
In [6]:
# Remove college name before clustering
gower_dist <- daisy(college_clean[, -1],
metric = "gower",
type = list(logratio = 3))
# Check attributes to ensure the correct methods are being used
# (I = interval, N = nominal)
# Note that despite logratio being called,
# the type remains coded as "I"
summary(gower_dist)
Out[6]:
301476 dissimilarities, summarized :
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0018601 0.1034400 0.2358700 0.2314500 0.3271400 0.7773500
Metric : mixed ; Types = I, I, I, I, N, N
Number of objects : 777
此外,我们可以通过观察最相似和最不相似的样本来判断该度量方法的合理性。本案例中,圣托马斯大学和约翰卡罗尔大学最相似,而俄克拉荷马科技和艺术大学和哈佛大学差异最大。
In [7]:
gower_mat <- as.matrix(gower_dist)
# Output most similar pair
college_clean[
which(gower_mat == min(gower_mat[gower_mat != min(gower_mat)]),
arr.ind = TRUE)[1, ], ]
Out[7]:

In [8]:
# Output most dissimilar pair
college_clean[
which(gower_mat == max(gower_mat[gower_mat != max(gower_mat)]),
arr.ind = TRUE)[1, ], ]
Out[8]:

聚类算法的选择
现在我们已经计算好样本间的距离矩阵,接下来需要选择一个合适的聚类算法,本文采用 PAM(partioniong around medoids)算法来构建模型:
PAM 算法的主要步骤:
随机选择 k 个数据点,并将其设为簇中心点
遍历所有样本点,并将样本点归入最近的簇中
对每个簇而言,找出与簇内其他点距离之和最小的点,并将其设为新的簇中心点
重复第2步,直到收敛
该算法和 K-means 算法非常相似。事实上,除了中心点的计算方法不同外,其他步骤都完全一致 。
优点:简单易懂且不易受异常值所影响
缺点:算法时间复杂度为 O(n2)O(n2)
聚类个数的选择
我们将利用轮廓系数来确定最佳的聚类个数,轮廓系数是一个用于衡量聚类离散度的内部指标,该指标的取值范围是[-1,1],其数值越大越好。通过比较不同聚类个数下轮廓系数的大小,我们可以看出当聚类个数为 3 时,聚类效果最好。
In [9]:
# Calculate silhouette width for many k using PAM
sil_width <- c(NA)
for(i in 2:10){
pam_fit <- pam(gower_dist,
diss = TRUE,
k = i)
sil_width[i] <- pam_fit$silinfo$avg.width
}
# Plot sihouette width (higher is better)
plot(1:10, sil_width,
xlab = "Number of clusters",
ylab = "Silhouette Width")
lines(1:10, sil_width)
聚类结果解释
描述统计量
聚类完毕后,我们可以调用 summary 函数来查看每个簇的汇总信息。从这些汇总信息中我们可以看出:簇1主要是中等学费且学生规模较小的私立非顶尖院校,簇2主要是高收费、低录取率且高毕业率的私立顶尖院校,而簇3则是低学费、低毕业率且学生规模较大的公立非顶尖院校。
In [18]:
pam_fit <- pam(gower_dist, diss = TRUE, k = 3)
pam_results <- college_clean %>%
dplyr::select(-name) %>%
mutate(cluster = pam_fit$clustering) %>%
group_by(cluster) %>%
do(the_summary = summary(.))
print(pam_results$the_summary)
[[1]]
accept_rate Outstate Enroll Grad.Rate Private
Min. :0.3283 Min. : 2340 Min. : 35.0 Min. : 15.00 No : 0
1st Qu.:0.7225 1st Qu.: 8842 1st Qu.: 194.8 1st Qu.: 56.00 Yes:500
Median :0.8004 Median :10905 Median : 308.0 Median : 67.50
Mean :0.7820 Mean :11200 Mean : 418.6 Mean : 66.97
3rd Qu.:0.8581 3rd Qu.:13240 3rd Qu.: 484.8 3rd Qu.: 78.25
Max. :1.0000 Max. :21700 Max. :4615.0 Max. :118.00
isElite cluster
Not Elite:500 Min. :1
Elite : 0 1st Qu.:1
Median :1
Mean :1
3rd Qu.:1
Max. :1
[[2]]
accept_rate Outstate Enroll Grad.Rate Private
Min. :0.1545 Min. : 5224 Min. : 137.0 Min. : 54.00 No : 4
1st Qu.:0.4135 1st Qu.:13850 1st Qu.: 391.0 1st Qu.: 77.00 Yes:65
Median :0.5329 Median :17238 Median : 601.0 Median : 89.00
Mean :0.5392 Mean :16225 Mean : 882.5 Mean : 84.78
3rd Qu.:0.6988 3rd Qu.:18590 3rd Qu.:1191.0 3rd Qu.: 94.00
Max. :0.9605 Max. :20100 Max. :4893.0 Max. :100.00
isElite cluster
Not Elite: 0 Min. :2
Elite :69 1st Qu.:2
Median :2
Mean :2
3rd Qu.:2
Max. :2
[[3]]
accept_rate Outstate Enroll Grad.Rate Private
Min. :0.3746 Min. : 2580 Min. : 153 Min. : 10.00 No :208
1st Qu.:0.6423 1st Qu.: 5295 1st Qu.: 694 1st Qu.: 46.00 Yes: 0
Median :0.7458 Median : 6598 Median :1302 Median : 54.50
Mean :0.7315 Mean : 6698 Mean :1615 Mean : 55.42
3rd Qu.:0.8368 3rd Qu.: 7748 3rd Qu.:2184 3rd Qu.: 65.00
Max. :1.0000 Max. :15516 Max. :6392 Max. :100.00
isElite cluster
Not Elite:199 Min. :3
Elite : 9 1st Qu.:3
Median :3
Mean :3
3rd Qu.:3
Max. :3
PAM 算法的另一个优点是各个簇的中心点是实际的样本点。从聚类结果中我们可以看出,圣弗朗西斯大学是簇1 的中心点,巴朗德学院是簇2 的中心点,而密歇根州州立大学河谷大学是簇3 的中心点。
In [19]:
college_clean[pam_fit$medoids, ]
Out[19]:

可视化方法
t-SNE 是一种降维方法,它可以在保留聚类结构的前提下,将多维信息压缩到二维或三维空间中。借助t-SNE我们可以将 PAM 算法的聚类结果绘制出来,有趣的是私立顶尖院校和公立非顶尖院校这两个簇中间存在一个小聚类簇。
In [22]:
tsne_obj <- Rtsne(gower_dist, is_distance = TRUE)
tsne_data <- tsne_obj$Y %>%
data.frame() %>%
setNames(c("X", "Y")) %>%
mutate(cluster = factor(pam_fit$clustering),
name = college_clean$name)
ggplot(aes(x = X, y = Y), data = tsne_data) +
geom_point(aes(color = cluster))
进一步探究可以发现,这一小簇主要包含一些竞争力较强的公立院校,比如弗吉尼亚大学和加州大学伯克利分校。虽然无法通过轮廓系数指标来证明多分一类是合理的,但是这 13 所院校的确显著不同于其他三个簇的院校。
In [25]:
tsne_data %>%
filter(X > 15 & X < 25,
Y > -15 & Y < -10) %>%
left_join(college_clean, by = "name") %>%
collect %>%
.[["name"]]
Out[25]:
‘Kansas State University’
‘North Carolina State University at Raleigh’
‘Pennsylvania State Univ. Main Campus’
‘SUNY at Buffalo’
‘Texas A&M Univ. at College Station’
‘University of Georgia’
‘University of Kansas’
‘University of Maryland at College Park’
‘University of Minnesota Twin Cities’
‘University of Missouri at Columbia’
‘University of Tennessee at Knoxville’
‘University of Texas at Austin’
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26