
大数据与区块链的爱恨情仇,一场技术界相爱相杀的爱恋
大数据时代的来临,为众多企业带来了全新的机遇和挑战。随着数据量、数据种类的增多,企业由历史数据分析渐渐过渡到基于多源、海量数据的实时分析。
我们都知道商场如战场,谁能在企业运营中做出快速、高效的分析决策,谁就能日益激烈的市场竞争中立于不败之地。
同时,区块链技术被公认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。
如果说蒸汽机释放了人们的生产力,电力解决了人们基本的生活需求,互联网彻底改变了信息传递的方式,那么区块链作为构造信任的机器,将可能改变人类社会价值传递的重要方式。
近年来,大数据在迅猛发展同时也面临着诸多的困境,区块链又以如此强势的姿态进入大家的认知,那么汹涌而来的区块链会对大数据又什么影响呢?
什么是区块链?
区块链,是比特币的底层技术架构,它在本质上是一种去中心化的分布式账本。
区块链技术作为一种持续增长的、按序整理成区块的链式数据结构,通过网络中多个节点共同参与数据的计算和记录,并且互相验证其信息的有效性。
从这一点来说,区块链技术也是一种特定的数据持久化技术。
由于去中心化在安全、便捷方面的特性,很多业内人士看好其发展,认为它是对现有互联网技术的升级与补充。
区块链的特性
区块链的定义,其具有有去中心化、不可篡改、可信任性、可追溯、全网记账等优势,具备颠覆传统行业的可能,使得相关业务公开化、透明化、公正化。
区块链在过去的2017年大数据行业的十大热词之一,总结有如下三个特性:
1、区块链是“去中心化”的
去中心化的本意是指,每个人参与共识的自由度。
他有参与的权力,他也有退出的权力。在代码开源、信息对称的前提下,参与和决策的自由度,即意味着公平。
2、区块链是公开的
在区块链中,用户随时都能见到一切,它是公开透明的。
3、区块链同时也是加密的
区块链使用强大的加密技术来维护虚拟安全。除了强有力的外部防御外,区块链没有中央数据库,因此无法被黑客入侵。
区块链对大数据的影响
从移动互联网到大数据、区块链,当今时代,技术变化的潮流势不可挡,以至于很多人一时竟难以明白和适应。
但毫无疑问,区块链正在让大数据汹涌而来。区块链的可信任性、安全性和不可篡改性,正在让更多数据被释放出来。
1、区块链使大数据极大降低信用成本
我们未来的信用资源从何而来?其实中国正迅速发展的互联网金融行业已经告诉了我们,信用资源会很大程度上来自大数据。
通过大数据挖掘建立每个人的信用资源是很容易的事,但是现实并没有如此乐观。
关键问题就在于现在的大数据并没有基于区块链存在,大的互联网公司各自垄断,导致了数据路孤岛现场。
在经济全球化、数据全球化的时代,如果大数据仅仅掌握在互联网公司的话,全球的市场信用体系建立是并不能去中心化的,如果使用区块链技术让数据文件加密,直接在区块链上做交易,那么我们的交易数据将来可以完全存储在区块链上,成为我们个人的信用资源,所有的大数据将成为每个人产权清晰的信用资源,这也是未来全球信用体系构建的基础。
2、区块链是构建大数据时代的信任基石
区块链因其“去信任化、不可篡改”的特性,可以极大的降低信用成本,实现大数据的安全存储。
将数据放在区块链上,可以解放出更多数据,使数据可以真正“流通”起来。
基于区块链技术的数据库应用平台,不仅可以保障数据的真实、安全、可信,如果数据遭到破坏,也可以通过区块链技术的数据库应用平台灾备中间件进行迅速恢复。
3、区块链是促进大数据价值流通的管道
“流通”使得大数据发挥出更大的价值,类似资产交易管理系统的区块链应用,可以将大数据作为数字资产进行流通,实现大数据在更加广泛的领域应用及变现,充分发挥大数据的经济价值。
我们看到,数据的“看过、复制即被拥有”等特征,曾经严重阻碍数据流通。但基于去中心化的区块链,却能够破除数据被任意复制的威胁,从而保障数据拥有者的合法权益。
区块链还提供了可追溯路径,能有效破解数据确权难题。有了区块链提供安全保障,大数据将更加活跃涌动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15