京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习中的概率问题
机器学习的过程可以理解为计算机通过分析大量的数据获得模型,并通过获得的模型进行预测的过程。机器学习的模型可以有多种表示,例如线性回归模型,SVM模型,决策树模型,贝叶斯模型。
概率类型
在理解概率模型之前,首先要理解的各种概率类型所表示的确切含义。
1.先验概率
某事件发生的概率。
2.条件概率
在某种条件下,事件A发生的概率,可以是基于历史数据的统计,可以由背景常识得出,也可以是人的主观观点给出。一般都是单独事件概率,如P(x),P(y)。
3.后验概率
条件概率的一种特殊情况,它限定了事件为隐变量取值(不可观测),而条件为观测结果。
4.联合概率
表示多个事件同时发生的概率。
5.似然概率
条件概率的一种,针对参数而言,意思是某参数(某事件发生的概率)取得某一值得概率。
正向过程(普通概率):给定参数后,预测即将发生的事件的可能性,以投掷硬币为例,已知一枚均匀硬币,投掷出正反面的概率均为0.5(给出的参数),求投掷两次硬币都朝上的概率。
![]()
逆向过程(似然概率):给定事件发生的可能性,求解参数为某一值得可能性,以投掷硬币为例,已知一枚均匀硬币,投掷两次都是正面朝上(条件),求正面朝上的概率为0.5的可能性是多少。
![]()
求正面朝上概率为x的似然:
![]()
通过计算不同的正面朝上的概率的可能性,可以得到一条似然函数曲线:
似然函数曲线
最大似然概率,最大似然概率,在已知观测数据的条件下,找到使似然概率最大的参数值作为真实的参数估计。例如从似然函数曲线中可以得知,当PH=1时,似然函数取得最大值。
![]()
预测模型的概率表示
在这里我们假设已有的数据为X,可能出现的结果为Y,每一个可能的结果Y都对应一个给出数据X下的条件概率。
机器学习最终得到的结果是实现该条件的概率的最大化。
决策函数和条件概率
决策函数都是很熟悉了,在线性回归,SVM,神经网络中使用的都是决策函数Y=f(X),在贝叶斯分类中使用的是条件概率分布P(Y|X)。
条件概率分布模型可表示成决策函数
决策函数中隐含着条件概率
例如在线性回归模型中,通过不断训练是误差平方最小化,而误差平方最小化是根据极大似然假设推导而出的。
所以依据决策函数得到的结果满足极大似然概率,同时满足最大条件概率。
判别式模型和生成式模型
实现上述过程,基于是否对P(x|y)直接操作来区分有两种策略:
判别式模型:由数据直接对P(x|y)或决策函数f(x)进行建模,例如线性回归模型,SVM,决策树等,这些模型都预先制定了模型的格式,所需要的就是通过最优化的方法学到最优参数Θ即可。
生成式模型:这种策略并不直接对P(Y|X)进行建模,而是先对联合概率分布P(X,Y)进行建模,然后依据贝叶斯公式P(Y|X)=P(X,Y)P(X)间接的得到我们所期望的模型P(Y|X),这种策略最常见的算法就是我们接下来要介绍的贝叶斯分类器算法
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14