京公网安备 11010802034615号
经营许可证编号:京B2-20210330
实现商业突破的关键点—大数据
大数据可以说是近来年最火热的一个话题。微博等社交化媒体因其独特的开放性特征,也成为大数据利用最令人关注的领域。
而这两年,随着微博、微信等社交平台商业化尝试的深入,及其结果的不尽如人意,大数据的利用成为了一个能否实现商业化实质突破的关键点。而这个点的关键又在于社交平台是否能做到对大数据的真正开放。
对于社交平台大数据开放,行业关注点现在主要在集中在两方面:其一是社交平台大数据究竟价值几何?其二,是基于这一大数据,平台方能给出怎样的的全面开放政策,以及这类政策的持续和稳定性又如何。
社交平台的数据价值
要了解社交平台大数据的价值,首先要搞清楚的是,开放平台合作伙伴们是如何利用这一大数据的。
化繁为简,我们将其概括为三步:首先是对平台所产生的庞大数据进行分析;然后,通过分析获得数据背后的用户诉求;最后,针对用户诉求进行个性化、精确化和智能化的信息推送和服务推广,并最终实现吸引用户点击、消费的目标。
举个简单例子,比如有用户在微博分享地理位置、景点等信息时,其广告模块就会快速精准的为其推荐相关的机票、酒店等信息。
而实现这一所有流程的起始点,就在于用户在社交网络上的生活化分享。而这也正是社交网络大数据的价值所在。
此外,企业通过社交大数据的分析和处理,还可以低成本的进行舆论监控,极大降低了企业品牌危机产生和扩散的可能。
开放尺度定成败
大数据的价值只是基础,要实现智能营销,一个重要层面还在于第三方能从多大程度上利用到这一数据进行挖掘。
而这也包含了两个层面,首先是API开放多样性,其次是数据的完整性。
在API开放方面,一直以来行业对开放平台期待最多的公司要数新浪。新浪初期也的确不负众望,给予了第三方开发者近百个API接口,可谓相当丰富。在2012年前后,通过这些接口,也密集涌现出了很多基于新浪微博大数据的创业公司,盛况空前。
然而这种基于开放而联姻的蜜月期还没来得及令人回味,新浪对于API开放的态度却在近期发生了转变。如在去年,新浪微博便关闭了其开放平台的私信接口,今年更是对开放平台接口做了进一步收紧(对当前授权应用只能读取授权该应用的当前用户微博,不能获取其他用户微博;同时,当前授权应用只能读取授权该应用的当前用户的关系,不能读取其他用户的关系。)。
而这种收窄的姿态,在阿里巴巴入股新浪微博之后,愈趋明显。
众多开发者表示,其多款应用的数据已被清空或者api接口被停用。现在新浪开放平台的每次更新也是删的多,增的少,而增加的功能也大多都是可有可无的。
开发作为当下互联网的一个趋势(百度、阿里巴巴、腾讯【简称BAT】三巨头都在谈开放),新浪微博反其道而行之,当然,新浪对API开放性的收缩,我们要承认其一些深层次的因素考量。比如之前私信端口的开放,就造成大量垃圾信息对用户的骚扰;以及与阿里联姻后,来自阿里方面的诉求和压力等。
与此相比,一直以来不声不响的腾讯微博倒在开放平台上做出了不少动静。比如,国内唱吧、啪啪,国外cooliris都选择了腾讯微博,甚至IOS7系统也首次开放IOS-SDK给腾讯微博。
其次说到开放的完整性,所谓数据完整性就是当开发者请求某种数据时,开放平台是否对返回数据的数量有所限制。这点也最能反映出一个平台的真实开放程度。
以最基本的获取一个用户的”粉丝列表“为例,新浪,对于一般授权用户,最多只能获得5000个最新粉丝信息,而腾讯则没有任何的限制。
腾讯副总裁刘炽平曾在其内部讲话中曾提到:“关键路径要有用户价值,如果没有用户价值,这里放一个流量,那里放一个流量,价值不大。” 而这句话也正点明了大数据开放的本质应该是什么。
行业皆知,只有数据挖掘精准度在85%以上时,才具备实现精准营销的条件。如数据挖掘不够精准,就会直接影响到广告营销的投放效果。而数据不完整,数据挖掘的精准度只是空谈而已。
而数据完整开放的重要性,还不仅仅限于第三方开放者,对于社交平台本身,在提升用户体验方面也息息相关。
比如腾讯微博最近上线的微圈、微热点、微频道、微博管家等产品,就是通过数据挖掘技术,抽取用户阅读时间线中来自游戏、活动、第三方应用等营销和广告微博,并将其过滤,从而进一步减轻垃圾信息对于微博用户的骚扰,从而使用户更高效的获取优质微博信息,最终实现用户阅读体验的提升。
这种将大数据挖掘产品化的路子,应该说值得借鉴。因为一方面,它能比较充分的满足第三方开发者需求;更重要的是,这并不以影响用户端的产品体验为代价,实施得好的话,可形成一个良性闭环模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22