
企业大数据规划需要的三种能力和五个步骤
大数据规划有五个步骤,首先从业务驱动的角度,相关部门选择要解决和产生的业务场景。针对需求处理和采取整合这些场景需要的大数据。当然选择的重点是怎么使信息快速产生价值。
数据分析的未来将朝着更为普及化、更为实时的数据分析去迈进,也就是说“针对正确的人,在正确的时间,获得正确的信息”,从这个意义来说,它已经超越了技术本身,是更为接近业务层面的实时分析。
对于一个成功企业来说,数据整合能力、分析能力和行动能力不可或缺。如果不具备完善的数据整合、分析和行动能力的企业迟早面临被淘汰的风险。在经营环境发生巨变的情况下,任何企业都必须在大数据规划上做好准备,这样才能抢先竞争对手发现市场新的趋势。
三种能力
我们建议企业和政府机构进行数据整合能力、分析能力和行动能力的建设。对于任何公司的管理层来说,要充分认识到数据的重要性,在管理层充分认识到数据的重要性之后,内部要有足够的人员和能力去整合、搭建和完善数据管理基础架构。有了海量数据之后,数据分析师能够对其进行分析和挖掘,使其产生理想的价值。
数据分析能力通过一定的方法论可以获得。这个方法论从宏观的角度来看,是通过数据整合探索出有效的业务价值,进而精确地协助制定商业策略或服务提升的策略,有效地采取正确的行动,来协助业务和服务质量的增长,或是解决业务已知、不确定或发现未知的问题。
另外,数据要实现普及化,不仅掌握在管理层手中,在数据安全和权限管理的机制下,企业或单位的每一个人都要了解自己的业务具体发生了什么,为何发生,预测将要发生什么情况,从而更快、更好地做出决策,最终达到智慧型的管理,通过一些主动式的事件,产生正确的行动,如业务增长的价值措施和办法,来精确有效地提升业务的增长。
五个步骤
如今大数据已经远远超出了IT的范畴,也就是说所有部门都在大数据运用的范畴中。
大数据规划有五个步骤,首先从业务驱动的角度,相关部门选择要解决和产生的业务场景。针对需求处理和采取整合这些场景需要的大数据。当然选择的重点是怎么使信息快速产生价值。场景因需求不同而包罗万象:例如企业在精确营销方面提升业务增长,对于其客户在购买哪些产品前的黄金路径统计分析等等。
其次,直接产生的价值需要与已有的客户关系管理、客户交易等数据进行结合和关联,从而为企业产生总体的关键价值效益。例如,哪些用户在购买前确实通过上述统计总结的黄金路径,而这些用户和该企业的历史关系为何,以提供企业下一步精确行动的优先顺序等等。
第三,整个企业要建立大数据分析的支持体系、分析的文化、分析数据的人才,彻底形成企业对大数据的综合管理、探索、共识。大数据能力的建设是企业或政府单位内上下及跨部门就如何提供更加智慧型服务和产品给用户的议题。
第四,随着大数据探索范围的扩大,企业要建立大数据的标准,统一数据格式、采集方法、使用方式,设定一个共享的愿景和目的,然后按照阶段化的目标去实现愿景。例如,有关数据的存储和处理长期围绕在关系型的结构数据中,提供更加智慧型服务和产品是需要结合过去难以处理分析的数据,如文本、图像等等。数据内容快速演变,因此对数据的标准、格式、采集、工具、方法等的治理能力必须与时俱进。
第五,最终建成企业或政府单位内的“统一数据架构”,从各类所需的多元的结构化数据源建立整合能力(采集、存储、粗加工)。在此基础上,建设数据探索和分析能力(从整合出来的海量数据里快速探索出价值),之后如何有效、实时、精确地与已有的业务数据结合,产生精确的业务行动能力(进行更深度的利用和提供更智慧型的服务),从而达到“针对正确的人,在正确的时间,正确的方式,提供正确的信息”的目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15