京公网安备 11010802034615号
经营许可证编号:京B2-20210330
是一个探索工具,用来揭示数据集中的自然分组(或聚类),如果不揭示,这些分组是不明显的。此过程使用的算法有多个不错的特征使其区分于传统聚类技术:◎分类变量和连续变量的处理。通过假设变量是独立的,可以假设分类变量和连续变量服从联合多项正态分布。◎聚类数的自动选择。通过跨不同的聚类解比较模型选择准则的值,该过程可以自动确定最优的聚类数。◎可缩放性。通过构造摘要记录的聚类特征(CF)树,二阶算法允许您分析大型数据文件。
二、说明(分析-分类-两步聚类)
1、距离测量。此选项确定如何计算两个聚类之间的相似性。◎对数相似性。该似然度量假设变量服从某种概率分布。假设连续变量是正态分布,而假设分类变量是多项分布。假设所有变量均是独立的。◎欧几里德距离。欧几里德距离测量是两个聚类之间的“直线”距离。它只能用于所有变量连续的情况。
2、聚类数。此选项允许您指定如何确定聚类数。◎自动确定。该过程将使用在“聚类准则”组中指定的准则,自动确定“最好”的聚类数。或者,还可以输入一个正整数指定过程应考虑的最大聚类数。◎指定固定值。允许您固定解中的聚类数。最小值不能大于最大值。
3、连续变量计数。此组提供了在“选项”对话框中指定的连续变量标准化的摘要。
4、聚类准则。此选项确定自动聚类算法如何确定聚类数。可以指定Bayesian信息准则(BIC)或Akaike信息准则(AIC)。
5、假设。似然距离测量假设聚类模型中的变量是独立的。而且,假设每个连续变量具有正态(高斯)分布,假设每个分类变量具有多项分布。经验内部检验表明,该过程对于违反独立性假设和分布假设均相当稳健,但您应尝试了解这些假设符合的程度。使用双变量相关过程可检验两个连续变量的独立性。使用交叉表过程可检验两个分类变量的独立性。使用均值过程可检验连续变量和分类变量之间的独立性。使用探索过程可检验连续变量的正态性。使用卡方检验过程可检验分类变量是否具有指定的多项分布。
三、选项(分析-分类-两步聚类-选项)
1、离群值处理。该组允许您在聚类特征(CF)树填满的情况下,在聚类过程中特别地处理离群值。如果CF树的叶节点中不能接受更多的个案,且所有叶节点均不能分割,则
说明CF树已满。
2、内存分配。此组允许您以兆字节(MB)为单位,指定聚类算法应使用的最大的内存量。如果该过程超过了此最大值,则将使用磁盘存储内存中放不下的信息。请指定大于等于4的数。
3、变量标准化。聚类算法处理标准化连续变量。任何未标准化的连续变量都应保留为“要标准化的变量”列表中的变量。为了节省部分时间和计算工作,您可以选择任何已标准化的连续变量作为“假定已标准化的变量”列表中的变量。
4、CF树调节准则。以下聚类算法设置特别地应用到聚类特征(CF)树,且应谨慎地更改:◎初始距离更改阈值。这是用来使CF树生长的初始阈值。如果将给定的个案插入到CF树的叶子中将生成小于阈值的紧度,则不会分割叶子。如果紧度超过阈值,则会分割叶子。◎最大分支(每个叶节点)。叶节点可以具有的最大子节点数。◎最大树深度。CF树可以具有的最大级别数。◎可能的最大节点数。这指示过程可能生成的最大CF树节点数,基于函数(bd+1–1)/ (b–1),其中b是最大分支,d是最大树深度。请注意,非常大的CF树可能会耗尽系统资源,从而对过程的性能产生不利影响。每个节点最少需要16个字节。
5、聚类模型更新。此组允许您导入和更新在先前分析中生成的聚类模型。输入文件以XML格式包含CF树。然后将使用活动文件中的数据更新模型。必须在主对话框中以与先前分析中指定的顺序相同的顺序选择变量名。除非您专门将新的模型信息写到相同的文件名中,否则该XML文件保持不变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27