
R语言之随机数与抽样模拟篇
R语言生成均匀分布随机数的函数是runif()
句法是:runif(n,min=0,max=1) n表示生成的随机数数量,min表示均匀分布的下限,max表示均匀分布的上限;若省略参数min、max,则默认生成[0,1]上的均匀分布随机数。
例1:
> runif(5,0,1) # 生成5个[0,1]的均匀分布的随机数
[1] 0.5993 0.7391 0.2617 0.5077 0.7199
> runif(5) # 默认生成5个[0,1]上的均匀分布随机数
[1] 0.2784 0.7755 0.4107 0.8392 0.7455
例2
随机产生100个均匀分布随机数,作其概率直方图,再添加均匀分布的密度函数线,程序如下:
> x=runif(100)
> hist(x,prob=T,col=gray(.9),main="uniform on [0,1]")
> curve(dunif(x,0,1),add=T) #添加均匀分布的密度函数线
3.1.2 正态分布随机数
正态分布随机数的生成函数是 rnorm()
句法是:rnorm(n,mean=0,sd=1) 其中n表示生成的随机数数量,mean是正态分布的均值,默认为0,sd是正态分布的标准差,默认时为1;
例:
随机产生100个正态分布随机数,作其概率直方图,再添加正态分布的密度函数线
> x=rnorm(100)
> hist(x,prob=T,main="normal mu=0,sigma=1")
> curve(dnorm(x),add=T)
3.1.3 二项分布随机数
二项分布是指n次独立重复贝努力试验成功的次数的分布,每次贝努力试验的结果只有两个,成功和失败,记成功的概率为p
生成二项分布随机数的函数是:rbinom()
句法是:rbinom(n,size,prob) n表示生成的随机数数量,size表示进行贝努力试验的次数,prob表示一次贝努力试验成功的概率
例:
产生100个n为10,15,50,概率p为0.25的二项分布随机数:
> par(mfrow=c(1,3))
> p=0.25
> for( n in c(10,20,50))
{ x=rbinom(100,n,p)
hist(x,prob=T,main=paste("n =",n))
xvals=0:n
points(xvals,dbinom(xvals,n,p),type="h",lwd=3)
}
> par(mfrow=c(1,1))
3.1.4 指数分布随机数
R生成指数分布随机数的函数是:rexp()
其句法是:rexp(n,lamda=1) n表示生成的随机数个数,lamda=1/mean
例:
>x=rexp(100,1/10) # 生成100个均值为10的指数分布随机数
>hist(x,prob=T,col=gray(0.9),main=“均值为10的指数分布随机数”)
>curve(dexp(x,1/10),add=T) #添加指数分布密度线
3.1.5 常见的分布函数
产生分布的随机数,只需要在相应的分布前加r就行
表 3-1 常见分布函数表
分布 中文名称 R中的表达 参数
Beta 贝塔分布 beta(a,b) shape1, shape2
Binomial 二项分布 binom(n,p) size, prob
Cauchy 柯西分布 cauchy( ) location, scale Chi-square 卡方分布 chisq(df)
df Exponential 指数分布 exp(lamda) rate F F分布 f(df1,df2) df1
df2
Gamma 伽玛分布 gamma() shape rate
Geometric 几何分布 geom() prob Hypergeometric 超几何分布 hyper() m,n,k
Logistic 逻辑分布 logis() location scale
Negative binomial 负二项分布 nbinom() size prob
Normal 正态分布 norm() mean, sd Multivariate normal 多元正态分布 mvnorm() mean,cov
Poisson 泊松分布 pois() lambda T t 分布 t() df
Uniform 均匀分布 unif() min, max Weibull 威布儿分布 weibull() shape, scale
Wilcoxon 威尔考可森分布 wilcox() m, n
表 3-2 与分布相关的函数及代号
函数代号 函数作用
r- 生成相应分布的随机数
d- 生成相应分布的密度函数
p- 生成相应分布的累积概率密度函数
q- 生成相应分布的分位数函数
例:
dnorm表示正态分布密度函数
pnorm表示正态分布累积概率密度函数
qnorm表示正态分布分位数函数(即正态累积概率密度函数的逆函数)
3.2 随机抽样
3.2.1 放回与无放回抽样
R可以进行有放回、无放回抽样
sample()函数即可以实现
句法为:sample(x,n,replace=F,prob=NULL)
3.3 统计模拟
3.3.1 几种常见的模拟方法
1 中心极限定理:
3 用函数进行模拟
指定模拟次数m=100,样本量n=10,概率=0.25,如果要改变这些参数来重新进行模拟将会很麻烦,下面将展示如何将上面的程序形成一个模拟函数再进行模拟。
> sim.clt <- function (m=100,n=10,p=0.25)
{ z = rbinom(m,n,p)
x = (z-n*p)/sqrt(n*p*(1-p))
hist(x,prob=T,breaks=20,main=paste("n =",n,”p =”,p))
curve(dnorm(x),add=T)
}
> sim.clt() # 默认 m=100,n=10,p=0.25
> sim.clt(1000) # 取 m=1000,n=10,p=0.25
> sim.clt(1000,30) # 取 m=1000,n=30,p=0.25
> sim.clt(1000,30,0.5) # 取 m=1000,n=30,p=0.5
4 正态概率模拟
能比直方图更好判定随机数是否近似服从正态分布的是正态概率图。
其基本思想是:作实际数据的分位数与正态分布数据的分位数的散点图,也就是作样本分位数与理论分位数的散点图。
3.3.2 模拟函数的建立方法
若每次模拟都要编写一个循环,非常麻烦.
sim.fun()就是专门用来解决这类问题的
只需要编写一个用来生成随机数的函数,剩下的工作就交给sim.fun来完成
sim.fun <-function (m,f,...) # m 模拟样本次数,f需模拟的函数
{
sample <-1:m
for (i in 1:m) {
sample[i] <-f(...)
}
sample
}
例:
二项分布:
先编写一个函数用来生成一个二项分布随机的标准化值
>f<-function(n=10,p=0.5){s=rbinom(1,n,p);(s-n*p)/sqrt(n*p*(1-p)) }
> x=sim.fun(1000,f) # 模拟1000个二项随机数
> hist(x,prob=T)
均匀分布来模拟中心极限定理:
> f = function(n=10) (mean(runif(n)-1/2)/(1/sqrt(12*n))
> x=sim.fun(1000,f) # 模拟1000个均匀随机数
> hist(x,prob=T)
正态分布:
>f=function(n=10,mu=0,sigma=1){r=rnorm(n,mu,sigma);(mean(r)-m
u)/(sigma/sqrt(n)) }
> x = sim.fun(1000,f) #模拟1000个样本量为10的N(0,1)随机数
> hist(x,breaks=10,prob=T)
> x = sim.fun(1000,f,30,5,2) # 模拟1000个样本量为30的N(5,4)随机数
> hist(x,breaks=10,prob=T)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23