京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言之随机数与抽样模拟篇
R语言生成均匀分布随机数的函数是runif()
句法是:runif(n,min=0,max=1) n表示生成的随机数数量,min表示均匀分布的下限,max表示均匀分布的上限;若省略参数min、max,则默认生成[0,1]上的均匀分布随机数。
例1:
> runif(5,0,1) # 生成5个[0,1]的均匀分布的随机数
[1] 0.5993 0.7391 0.2617 0.5077 0.7199
> runif(5) # 默认生成5个[0,1]上的均匀分布随机数
[1] 0.2784 0.7755 0.4107 0.8392 0.7455
例2
随机产生100个均匀分布随机数,作其概率直方图,再添加均匀分布的密度函数线,程序如下:
> x=runif(100)
> hist(x,prob=T,col=gray(.9),main="uniform on [0,1]")
> curve(dunif(x,0,1),add=T) #添加均匀分布的密度函数线
3.1.2 正态分布随机数
正态分布随机数的生成函数是 rnorm()
句法是:rnorm(n,mean=0,sd=1) 其中n表示生成的随机数数量,mean是正态分布的均值,默认为0,sd是正态分布的标准差,默认时为1;
例:
随机产生100个正态分布随机数,作其概率直方图,再添加正态分布的密度函数线
> x=rnorm(100)
> hist(x,prob=T,main="normal mu=0,sigma=1")
> curve(dnorm(x),add=T)
3.1.3 二项分布随机数
二项分布是指n次独立重复贝努力试验成功的次数的分布,每次贝努力试验的结果只有两个,成功和失败,记成功的概率为p
生成二项分布随机数的函数是:rbinom()
句法是:rbinom(n,size,prob) n表示生成的随机数数量,size表示进行贝努力试验的次数,prob表示一次贝努力试验成功的概率
例:
产生100个n为10,15,50,概率p为0.25的二项分布随机数:
> par(mfrow=c(1,3))
> p=0.25
> for( n in c(10,20,50))
{ x=rbinom(100,n,p)
hist(x,prob=T,main=paste("n =",n))
xvals=0:n
points(xvals,dbinom(xvals,n,p),type="h",lwd=3)
}
> par(mfrow=c(1,1))
3.1.4 指数分布随机数
R生成指数分布随机数的函数是:rexp()
其句法是:rexp(n,lamda=1) n表示生成的随机数个数,lamda=1/mean
例:
>x=rexp(100,1/10) # 生成100个均值为10的指数分布随机数
>hist(x,prob=T,col=gray(0.9),main=“均值为10的指数分布随机数”)
>curve(dexp(x,1/10),add=T) #添加指数分布密度线
3.1.5 常见的分布函数
产生分布的随机数,只需要在相应的分布前加r就行
表 3-1 常见分布函数表
分布 中文名称 R中的表达 参数
Beta 贝塔分布 beta(a,b) shape1, shape2
Binomial 二项分布 binom(n,p) size, prob
Cauchy 柯西分布 cauchy( ) location, scale Chi-square 卡方分布 chisq(df)
df Exponential 指数分布 exp(lamda) rate F F分布 f(df1,df2) df1
df2
Gamma 伽玛分布 gamma() shape rate
Geometric 几何分布 geom() prob Hypergeometric 超几何分布 hyper() m,n,k
Logistic 逻辑分布 logis() location scale
Negative binomial 负二项分布 nbinom() size prob
Normal 正态分布 norm() mean, sd Multivariate normal 多元正态分布 mvnorm() mean,cov
Poisson 泊松分布 pois() lambda T t 分布 t() df
Uniform 均匀分布 unif() min, max Weibull 威布儿分布 weibull() shape, scale
Wilcoxon 威尔考可森分布 wilcox() m, n
表 3-2 与分布相关的函数及代号
函数代号 函数作用
r- 生成相应分布的随机数
d- 生成相应分布的密度函数
p- 生成相应分布的累积概率密度函数
q- 生成相应分布的分位数函数
例:
dnorm表示正态分布密度函数
pnorm表示正态分布累积概率密度函数
qnorm表示正态分布分位数函数(即正态累积概率密度函数的逆函数)
3.2 随机抽样
3.2.1 放回与无放回抽样
R可以进行有放回、无放回抽样
sample()函数即可以实现
句法为:sample(x,n,replace=F,prob=NULL)
3.3 统计模拟
3.3.1 几种常见的模拟方法
1 中心极限定理:
3 用函数进行模拟
指定模拟次数m=100,样本量n=10,概率=0.25,如果要改变这些参数来重新进行模拟将会很麻烦,下面将展示如何将上面的程序形成一个模拟函数再进行模拟。
> sim.clt <- function (m=100,n=10,p=0.25)
{ z = rbinom(m,n,p)
x = (z-n*p)/sqrt(n*p*(1-p))
hist(x,prob=T,breaks=20,main=paste("n =",n,”p =”,p))
curve(dnorm(x),add=T)
}
> sim.clt() # 默认 m=100,n=10,p=0.25
> sim.clt(1000) # 取 m=1000,n=10,p=0.25
> sim.clt(1000,30) # 取 m=1000,n=30,p=0.25
> sim.clt(1000,30,0.5) # 取 m=1000,n=30,p=0.5
4 正态概率模拟
能比直方图更好判定随机数是否近似服从正态分布的是正态概率图。
其基本思想是:作实际数据的分位数与正态分布数据的分位数的散点图,也就是作样本分位数与理论分位数的散点图。
3.3.2 模拟函数的建立方法
若每次模拟都要编写一个循环,非常麻烦.
sim.fun()就是专门用来解决这类问题的
只需要编写一个用来生成随机数的函数,剩下的工作就交给sim.fun来完成
sim.fun <-function (m,f,...) # m 模拟样本次数,f需模拟的函数
{
sample <-1:m
for (i in 1:m) {
sample[i] <-f(...)
}
sample
}
例:
二项分布:
先编写一个函数用来生成一个二项分布随机的标准化值
>f<-function(n=10,p=0.5){s=rbinom(1,n,p);(s-n*p)/sqrt(n*p*(1-p)) }
> x=sim.fun(1000,f) # 模拟1000个二项随机数
> hist(x,prob=T)
均匀分布来模拟中心极限定理:
> f = function(n=10) (mean(runif(n)-1/2)/(1/sqrt(12*n))
> x=sim.fun(1000,f) # 模拟1000个均匀随机数
> hist(x,prob=T)
正态分布:
>f=function(n=10,mu=0,sigma=1){r=rnorm(n,mu,sigma);(mean(r)-m
u)/(sigma/sqrt(n)) }
> x = sim.fun(1000,f) #模拟1000个样本量为10的N(0,1)随机数
> hist(x,breaks=10,prob=T)
> x = sim.fun(1000,f,30,5,2) # 模拟1000个样本量为30的N(5,4)随机数
> hist(x,breaks=10,prob=T)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29