京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在保险中的实时应用
几十年来,保险业一直在努力处理交易和风险管理方面的数据。电信与数据融合的前沿趋势让保险公司对客户行为有了新的认知,而这被称之为“大数据”。数据具有广泛性、多样性的特点,特别是能将传统的关系型数据库管理技术推向极致,并且让人们越来越关注数据管理的新方法。大数据、分析和数据管理齐头并进;美国1.1万亿美元保险市场的各家公司正在争先恐后地开展自己的数据分析实践。
大数据的实时应用案例
大数据技术可以使公司评估非结构化数据由不可行变为可行。这里将介绍一些大数据技术在保险领域的应用案例。
欺诈识别
大数据已经帮助保险人做出了改变。而今他们超越了以索赔为中心和以人为中心的算法欺诈检测技术。这些技术侧重于分析索赔方、保险供应方和其他的信息来源(例如,同一个被保险人提交了多少份类似的索赔请求),并扩展到防火墙之外的数据源,以便基于外部信息分析(例如队列分析 - 使用一个人的社交圈子来分析相关个体之间的类似行为),这里考虑到的是一群互相联系的人而不仅仅是一个人。
在美国,每年健康保险欺诈给保险业带来大约700亿到2600亿美元的损失;欧盟也有300亿到1000亿美元的损失。
欺诈检测和预防主要通过两种方法实现:
基于实时数据分析的欺诈审计规则(基于历史数据的传统类型)
欺诈预测记分卡(基于实时数据的新类型)
客户关系管理(CRM)
所有的非结构化数据都可以提供给所有的保险公司,这可以成为“大数据分析”方法的基础。一些非结构化数据源包括:
客户线上文档
如果这些文档可以被轻松搜索到并且能汇集到企业的数据管理平台,那么保险公司就可以获得关于客户的大量信息,包括对非标准、非结构化的生命健康的医疗报告信息,以及再保险和大型商业财产保险部门的信息。
客户关怀通话记录
这些内容包含了客户来电自由形式的代表性评论,这些评论可以用来进行市场情绪调研,有助于形成策略和付诸实践,以提高客户的保留率,减少客户流失。
点击流数据
由面向客户的网站生成,可以分析这些数据,以发现显示客户倾向的浏览模式,尤其是当与呼叫中心记录相关的时候,找出那些客户在网络交互后立即呼叫的例子。
索赔管理
大数据也与索赔管理息息相关:运营商希望在索赔流程期间保存好图像、视频和文本标记(例如,来自警察检查员或拖车司机的汽车保险索赔的文本标记)。结合投保人和受益人几个实体(受益人、投保人、保险人)的汇总信息对非结构化数据的大数据分析变得尤为重要。
承保
在再保险和大型商业保险部门,大量的支持信息会作为信息提交的一部分(例如,损失历史、财产计划、车辆调度和董事的详细信息)。
大数据技术使保险公司能够快速地存储和访问任何数据,以便他们能够通过分析来突出异常、某种模式和部分重点——这是人工阅读文档时代非常困难的事情。自动化数据管理的能力,以及记录支持文档的能力,使保险公司能够创建风险和客户档案,这在整个公司中都是统一可审计的并且能够提供丰富的分析资料。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27