
在数据挖掘中,前期数据预处理,会涉及到很多缺失值的处理问题。
现以python代码实现为例,看如何具体处理的。
所需python包
from pandas import Series, DataFrame
import pandas as pd
寻找缺失值
def FindFeactureNAorValue(data, feacture_cols, axis=0, value = 'NA', prob_dropFct = 0.95):
'''
函数说明:寻找每一个特征有多少value值,默认为:缺失值,及所占比率
输入:data——整个数据集,包括Index,target
feacture_cols——特征名
prob_dropFct——大于这个比例,就丢掉该特征
输出:numValue——DataFrame index='feacture1', columns=['numnumValue', 'probnumValue']
dropFeacture_cols——要丢掉的特征列名
'''
#计算x中value值个数
def num_Value(x, value = 'NA'):
if value == 'NA':
return sum(x.isnull()) #寻找缺失值个数
else:
return sum(x == value) #寻找某个值value个数
numValue = data[feacture_cols].apply(num_Value, axis=axis,args=[value])
numValue = DataFrame(numValue, columns = ['numValue'])
nExample = data.shape[0]
probValue = map(lambda x: round(float(x)/nExample, 4), numValue['numValue'])
numValue['probValue'] = probValue
#寻找缺失值大于prob_dropFct的特征 m, , ,.
dropFeacture = numValue[numValue['probValue'] >= prob_dropFct]
dropFeacture_cols = list(dropFeacture.index)
return numValue,dropFeacture_cols
处理数值型特征缺失值
def FillNAorValueOfNum(data, numFct_cols, value = 'NA', replaceNA = 'mean'):
'''
函数说明:为数值变量填上缺失值,缺失值为特征均值,中位数,众数
输入:data——整个数据集,包括Index,target
numFct_cols——数值特征名
value ——'NA'或-1,-1也有可能为NA
replaceNA——'mean'、'mode'、'median'
输出:newData——DataFrame 替换value值
'''
#用均值、众数、中位数替换每一个特征缺失值或value值
def fillValue(x, value=-1, replaceNA='mean'):
if replaceNA == 'mean':
replaceValue = x.mean()
if replaceNA == 'mode':
x_mode = x.mode()
if len(x_mode) > 1:
replaceValue = x_mode[0]
else:
replaceValue = x_mode
if replaceNA == 'median':
replaceValue = x.median()
replaceValue = x.mean()
x[x == value] = replaceValue
return x
numData = data[numFct_cols]
if replaceNA == 'mean':
if value == 'NA':
newData = numData.fillna(numData.mean(),inplace=True)
else:
newData = numData.apply(fillValue, axis = 0, args=(value, replaceNA))
if replaceNA == 'mode':
if value == 'NA':
newData = numData.fillna(numData.mode(),inplace=True)
else:
newData = numData.apply(fillValue, axis = 0, args=(value, replaceNA))
if replaceNA == 'median':
if value == 'NA':
newData = numData.fillna(numData.median(),inplace=True)
else:
newData = numData.apply(fillValue, axis = 0, args=(value, replaceNA))
return newData
处理类别型特征缺失值
from sklearn.preprocessing import LabelEncoder
def FillNAofCat(data, feacture_cols):
'''
函数说明:为类别变量填上缺失值,认为缺失值是新的一类
输入:data——整个数据集,包括Index,target
feacture_cols——特征名
输出:catData——DataFrame 数值化后的类别特征样本
'''
catData = data[feacture_cols]
catData = catData.fillna(value = -9999)
#创建分类特征的标签编码器 jiushi字符串转化为数字
for var in feacture_cols:
number = LabelEncoder()
catData[var] = number.fit_transform(catData[var].astype('str'))
return catData
def CatToDummy(data, catfct_cols):
'''
函数说明:类别变量转化为哑变量
输入:data——整个数据集,包括Index,target
catfct_cols——类别特征名
输出:dummyCatData——DataFrame
'''
catData = data[catfct_cols]
dummyCatData = pd.get_dummies(catData,columns=catfct_cols, sparse = True)
return dummyCatData
为每个特征缺失值标上标志位
def GetNewValueOfNAfeacture(data, feacture_cols):
'''
函数说明:为有缺失值的变量创建一个新的变量 对缺失值标志为1,否则为0
输入:data——整个数据集,包括Index,target
feacture_cols——特征名
输出:newData——DataFrame类型
'''
newData = data[feacture_cols]
for var in feacture_cols:
if newData[var].isnull().any() == True:
newData[var+'_NA'] = newData[var].isnull()*1
newData = newData.drop(feacture_cols,1)
return newData
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18