京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS广义线性模型:广义估计方程
一、广义估计方程:
1、概念:广义估计方程过程对广义线性模型进行了扩展,以允许分析重复的测量或其他相关观察数据,例如聚类数据。
2、示例。公共卫生官员可以使用广义估计方程,在空气污染对儿童影响研究中采用重复度量Logistic回归模型。
3、数据。响应可以是尺度数据、计数数据、二分类数据或试验事件数据。假设因子是分类型的。假设协变量、尺度权重和偏移量是尺度型的。用于定义主体或主体内重复度量的变量不能用于定义响应,但可以在模型中发挥其他作用。
4、假设。假设各个个案在主体内部是相关的,在主体之间是独立的。表示主体内相关性的相关矩阵作为模型的一部分进行估计。
二、重复(分析-广义线性模型-广义估计方程-重复)
1、主体内变量。主体内变量值的组合定义主体中度量的顺序;因此,主体内变量和主体变量的组合唯一定义每个度量。例如,时间、医院ID和病人ID的组合为每个个案定义特定医院中特定病人的一次就诊。如果数据集已经排序,每个主体的重复度量因而按正确顺序在连续个案段中发生,则并不严格要求必须指定主体内变量,并且您可以取消选择按个体变量和主体内变量对个案进行排序并保存执行(临时)排序所需的处理时间。通常,利用主体内变量确保度量的正确顺序是很好的方法。主体变量和主体内变量不能用于定义响应,但它们可以在模型中执行其他功能。例如,医院ID可用作模型中的因子。
2、协方差矩阵。基于模型的估计是Hessian矩阵的广义逆负矩阵。健壮性估计(也称为Huber/White/sandwich估计)是“改正”的基于模型的估计,即使错误地指定了工作相关矩阵,也能提供对协方差的一致估计。该规范适用于广义估计方程的线性模型部分中的参数,而估计选项卡上的规范只适用于初始广义线性模型。
3、工作相关性矩阵。此相关矩阵表示主体内相关性。其大小由度量数决定,因此也由主体内变量的值组合决定。您可以指定以下结构之一:◎独立。重复度量不相关。◎AR(1)。重复度量具有一阶自回归关系。任意两个元素之间的相关性对于相邻元素为ñ,对于由第三个元素分隔的元素为ñ2,依此类推。ñ受到约束,以使–1<</span>ñ<1。◎可交换。此结构在元素之间具有同质相关性。又称为复合对称结构。◎依M协变量。连续的测量具有共同的相关系数,由第三个度量分隔的测量对具有共同的相关系数,依此类推,直到由m 1个其他度量分隔的测量对。具有更多分隔的测量假设为不相关。选择此结构时,请指定小于工作相关矩阵的阶的m值。◎未结构化。这是一个非常一般的相关矩阵。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31