
SPSS广义线性模型:广义估计方程
一、广义估计方程:
1、概念:广义估计方程过程对广义线性模型进行了扩展,以允许分析重复的测量或其他相关观察数据,例如聚类数据。
2、示例。公共卫生官员可以使用广义估计方程,在空气污染对儿童影响研究中采用重复度量Logistic回归模型。
3、数据。响应可以是尺度数据、计数数据、二分类数据或试验事件数据。假设因子是分类型的。假设协变量、尺度权重和偏移量是尺度型的。用于定义主体或主体内重复度量的变量不能用于定义响应,但可以在模型中发挥其他作用。
4、假设。假设各个个案在主体内部是相关的,在主体之间是独立的。表示主体内相关性的相关矩阵作为模型的一部分进行估计。
二、重复(分析-广义线性模型-广义估计方程-重复)
1、主体内变量。主体内变量值的组合定义主体中度量的顺序;因此,主体内变量和主体变量的组合唯一定义每个度量。例如,时间、医院ID和病人ID的组合为每个个案定义特定医院中特定病人的一次就诊。如果数据集已经排序,每个主体的重复度量因而按正确顺序在连续个案段中发生,则并不严格要求必须指定主体内变量,并且您可以取消选择按个体变量和主体内变量对个案进行排序并保存执行(临时)排序所需的处理时间。通常,利用主体内变量确保度量的正确顺序是很好的方法。主体变量和主体内变量不能用于定义响应,但它们可以在模型中执行其他功能。例如,医院ID可用作模型中的因子。
2、协方差矩阵。基于模型的估计是Hessian矩阵的广义逆负矩阵。健壮性估计(也称为Huber/White/sandwich估计)是“改正”的基于模型的估计,即使错误地指定了工作相关矩阵,也能提供对协方差的一致估计。该规范适用于广义估计方程的线性模型部分中的参数,而估计选项卡上的规范只适用于初始广义线性模型。
3、工作相关性矩阵。此相关矩阵表示主体内相关性。其大小由度量数决定,因此也由主体内变量的值组合决定。您可以指定以下结构之一:◎独立。重复度量不相关。◎AR(1)。重复度量具有一阶自回归关系。任意两个元素之间的相关性对于相邻元素为ñ,对于由第三个元素分隔的元素为ñ2,依此类推。ñ受到约束,以使–1<</span>ñ<1。◎可交换。此结构在元素之间具有同质相关性。又称为复合对称结构。◎依M协变量。连续的测量具有共同的相关系数,由第三个度量分隔的测量对具有共同的相关系数,依此类推,直到由m 1个其他度量分隔的测量对。具有更多分隔的测量假设为不相关。选择此结构时,请指定小于工作相关矩阵的阶的m值。◎未结构化。这是一个非常一般的相关矩阵。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16