京公网安备 11010802034615号
经营许可证编号:京B2-20210330
今天,大数据已无所不在,并且正被越来越广泛的被应用到历史、政治、科学、经济、商业甚至渗透到我们生活的方方面面中,获取的渠道也越来越便利。通过本系列的前面几篇文章,我们已经了解了数据可视化的必要性,而目前市面上也已经具备了非常多成熟的BI绘制工具,如Tableau,QlikView和魔镜等等。虽然这些工具正在变得越来越自动化,然而,随着大数据时代的来临,信息每天都在以爆炸式的速度增长,其复杂性也越来越高;其次,随着越来越多科学可视化的需求产生,地图、3D物理结构等技术将会被更加广泛的使用。所以,当人类的认知能力越发受到传统可视化形式的限制时,隐藏在大数据背后的价值就难以发挥出来,如果因为展示形式的限制导致数据的可读性和及时性降低,从而影响用户的理解和决策的快速实施,那么,数据可视化将失去其价值。
然而,所幸的是,技术的快速发展和不断变化的认知框架正在为人类打开新的视野,促使艺术与技术相结合而产生新型的数据可视化形式。

数据可视化的演变历史
一.为什么数据可视化形式亟待改进
我们每天都在说大数据,那数据到底能“大”到怎样的程度?也许你已经听说过以下结论:世界上90%的数据是在过去几年内产生的。事实上,过去三十年中,全世界的数据量大约每两年增加10倍,有专家估计,到2020年的时候,数据的年度产出量会达到4300%甚至更多,这已远远超出了著名的摩尔定律理论;所以,面临着这样的巨大挑战,大数据的时代的数据可视化给我们提出了以下要求:
1.以更细化的形式表达数据
首先,让我们来看一个相对简单的静态可视化图表:

图1.不安全流产率百分比估计(SciDev.Net 2016)
再来是一个更复杂的可视化图表:

图2.1986到2013年间172个国家的移动电话、固话和互联网的订购数量与容量(SciDev.Net 2015)
图1是一个数据量较少的静态可视化图表,我们可以通过4根柱状图的对比快速得到信息,而显而易见的,图2的数据量大大超出了图1,不仅有一百多个国家的数据变化,还包含不同的年份对比。更庞杂的数据量要求设计者通过更加细化的方式来呈现数据,所以我们可以看到图2以折线图为基础,结合了气泡的动态变化、语音说明,还包括让读者通过交互操作来选择展示哪些数据,才得以恰当和全面地展示这份数据,从而更完整的讲述一个故事。
2.以更全面的维度理解数据
“随着大数据技术成为我们生活的一部分,我们应该开始从一个比以前更大更去全面的角度来理解事物。”
这句话来自《大数据时代》,作者的原意是在大数据时代我们应该舍弃对数据精确性的要求,而去接受更全面但是也更混杂的数据,笔者认为它同样可以用来形容未来在数据可视化方面可以进步的方向。
众所周知,人类的视觉认知能力是有限的,类似下图这样的高密度可视化图形,虽然看似丰富和具有“艺术感”,可中间重叠连接的数据往往导致图形变得复杂和难以理解。

每个节点代表一个Wiki页面,每一根线代表页面之间的连接(维基百科链接结构可视化)
但是如果像下面这两个宇宙科普项目这样:你可以通过放大或缩小星系、调整视角、甚至像飞进了这些星球之间一样去观察它们,点击它们查看详细介绍等等……这样一个更”立体”的数据展示是否能更好的帮助你去理解这些信息呢?

通过交互式3D可视化展示探索宇宙中超过十万颗星球(100000 Stars)

通过手势识别设备来探索开普勒计划目前已确认的近2300个候选系外行星(视频地址)
如今,人们逐渐已不再满足于平面和静态的数据可视化视觉体验,而是越发想要“更深入”去理解一份数据,传统的数据可视化图表已不再是唯一的表现形式,现代媒介和技术的多样性,使人们感知数据的方式也更加多元。
3.以更美的方式呈现数据
艺术和数据可视化之间一直有着很深的联系,随着数据的指数级增长和技术的日趋成熟,一方面,用户们对可视化的美学标准提出越来越高的要求;另一方面,艺术家和设计师们也可以采用越来越创造性的方式来表现数据,使可视化更加具有冲击力。 纵观历史,随着人们接受并习惯了一种新的发明后,接下来就是对其进行一步步的优化和美化,以配合时代的要求, 数据可视化也是如此,因为它正在变得司空见惯,良好的阅读体验和视觉表现将成为其与竞品所区分的特征之一。

CNN ECOSPHERE项目将 “里约+20”地球峰会期间的Twitter话题汇集成星球上的一颗颗大树(视频地址)
在这里,笔者大概将其整理归纳为以下三点,当然它们并非都是必备特征:

三.典型应用场景
那么,这些运用新技术的数据可视化目前主要是在哪些场景和形式下使用呢?
1.大屏
首先,不得不提到的一定的是大屏了。什么是大屏?顾名思义,就是指通过整个超大尺寸的LED屏幕来展示关键数据内容。随着许多企业的数据积累和数据可视化的普及,大屏数据可视化需求正在逐步扩大,例如一些监控中心、指挥调度中心这样需要依据实时数据快速做出决策的场所,以及如企业展厅、展览中心之类以数据展示为主的展示场所,还有如电商平台在大促活动时对外公布实时销售数据来作为广告公关手段等等,而具体的展示形式又可能分为带触摸等交互式操作或只是作单向的信息展示等等。

双十一购物狂欢节采用实时数据大屏,带给观众更加准确、震撼和清晰的体验
2.触摸屏
作为实现交互式数据可视化的方式之一,触屏设备常常用作控制大屏展示内容的操作设备(其中也包括手机和平板),也可以兼顾显示和操作一体来单独展示数据,大大增加了用户与数据之间的互动程度。

将触摸屏与3D可视化相结合的微软黑科技(视频地址)
3.网页
目前应用于数据可视化方面的网页技术可以说是琳琅满目,如D3.js、Processing.js、Three.js、ECharts(来自百度EFE数据可视化团队)等等,这些工具都能很好的实现各类图表样式,而Three.js作为WebGL的一个第三方库则相对更侧重于3D方向的展示。

1992-2010年内世界小型武器和弹药的进出口贸易数据展示(armsglobe.chromeexperiments.com)
4.视频
有数据显示,人们的平均注意力集中时间已从2008年的12秒下降到2015年的8秒,这并不奇怪,当我们在面对越来越多的信息来源时,会自然倾向于选择更快捷的方法来获取信息,而人类作为视觉动物天生就容易被移动的物体吸引,所以视频也是数据可视化的有效展示手段之一,并且视频受到展示平台的限制更少,可以应用的场景也更广。不过因为其不可交互的特性,视频展示更适合将数据与更真实、更艺术的视觉效果相结合,预先编排成一个个引人入胜的故事向用户娓娓道来。

地球交通路线发展史(视频地址)
四.数据可视化的未来
可惜,仅有以上这些展示方式是不够的,人眼仅仅透过平面的屏幕来接收信息仍然存在着限制,VR、AR、MR、全息投影…这些当下最火热的技术已经被应用到游戏、房地产、教育等各行各业,可以预见的是数据可视化也能与这些技术擦出有趣的火花,比如带来更真实的感官体验和更接近现实的交互方式,使用户可以完全“沉浸”到数据之中。可以想象一下,当我们可以以360ᵒ全方位的角度去观看、控制、触摸这些数据时,这种冲击力自然比面对一个个仅仅配着冷冰冰的数字的柱状图要强得多。而在不远的未来,触觉、嗅觉甚至味觉,都可能成为我们接受数据和信息的感知方式。

DeathTools将新闻事件中抽象的死亡人数数据变成一具具尸体摆放在VR空间中,给用户更直观的冲击(视频地址)
结语
感谢技术的飞速发展带给了我们更多元的选择,使我们可以运用前所未有的创造性方式来展示数据, 但这并不意味着传统的数据可视化形式会逐渐消亡,毕竟这些新的展示技术和形式目前仍然面临着较高的制作成本,而传统的展示形式仍然是解决需要快速输出的可视化需求时的理想选择。数据可视化是一门同时结合了科学、设计和艺术的复杂学科,其核心意义始终在于清晰的叙述和艺术化的呈现,这些需要依靠数据分析师和设计师的精心策划而不是仅有炫酷的效果 ,最终达到帮助用户理解数据和做出决策的目标,才能发挥它巨大的价值和无限的潜力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27