京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据推进治理能力现代化
随着信息技术的快速发展,大数据改变了传统测量方法和研究方法,极大地提升了统计调查的准确性和科学性,改变了商业运作模式和公共管理方式。以大数据为基本依托的云治理,引发了治理方式的变革,深刻影响了人们的认识方式、思维方式、行为方式,有力地促进了治理能力现代化,为经济和社会提供了空前的改革创新发展机会。
大数据是对人与事存在形态和发展状况的数据描述,作为一种资源其真实价值的表现是各种各样、千变万化的数据。大数据之所以能够发挥越来越重要的作用,关键在于对大数据进行处理的云计算。对海量的、多样化的大数据进行科学处理,可以挖掘出其真实价值,获得有利于经济社会发展的重要信息。
由于大数据已广泛渗透到政治、经济、文化、科技、教育、卫生、安全等众多领域,通过对大数据的挖掘、分析、整理,可以发现个体存在、群体运动和社会运行等方面的诸多新含义,得到更系统、更全面的信息和知识,从而能够深刻认识复杂现象背后的真实情况及其运行规律。将大数据的云计算、云服务和智能生态融入社会治理体系,这是云治理产生的技术背景。云治理具有鲜明的云技术特征,是治理能力现代化的重要手段。
云治理更新了社会治理方式。云治理已成为社会治理的新形式和新方式,通过数据挖掘和分析进行精准治理成为社会治理的发展趋势,也是治理体系和治理能力现代化的重要途径。云治理已大大超越传统治理的范畴,增添了数据治理、开放治理、流动治理、虚拟治理等新内容。云治理的治理主体包括政府与企业。各类大公司无疑是生产数据、解析数据、掌控数据的重要主体,尤其信息类跨国公司在云治理中具有更为重要的突出作用。因此,云治理需要政府加强与企业的合作。
云治理呈现治理扁平化特征。数据连接的普遍性和全方位,决定了互联网行业与教育、卫生、文体、交通、物流等经济社会各领域都存在着资源分享与交叉治理问题。因而,云治理的治理空间、治理视野已经不再局限于具体问题或某个行业、某个领域,而是拓展为云世界。这种智慧治理方式超越了就事论事的传统分工治理模式,存在共治、共享的新价值理念,彼此之间的关系多是并列式而非垂直式,具有明显的扁平化特征。
云治理提高了社会治理效率。公开、透明、快速、便捷的云治理,呈现出明显预见性、先导性,可以将社会治理中的一些问题消除在萌芽状态,使得云治理比传统治理更有效率。例如,云治理可以帮助公众抵抗各种难以预计的风险灾难,增强应急防控效果。基于云治理的社会治理,治理主体不再完全通过行政控制手段来解决问题,在治理行为模式上也不再是简单的权力支配过程,而是努力塑造治理主体之间、治理主体与治理客体之间合作的运作模式,通过高效便捷的人性化服务来营造良好的社会治理秩序和经济发展环境。
以云治理激发社会发展活力。云治理将社会治理推到公共治理、协同治理、多元共治、复合治理的善治阶段,能更好兼顾效率与公平。通过云治理可以洞察民生需求,优化公共服务资源配置、拓展公共服务渠道、扩大公共服务范围、提高公共服务质量,提高社会治理的科学性和有效性,还能有效调动社会力量参与公共治理的积极性、主动性和创造性。实践证明,发挥云治理作用可以为各类市场主体提供平等竞争条件与良好发展环境,为劳动者提供就业机会和社会保障服务等。
以云治理促进经济社会发展。大数据作为具有重要作用的资源,催生了新的经济形态,创造了经济发展新机遇。对于企业来说,既可以利用云治理加强对市场运行的分析和预测,合理配置要素资源,提升自身的经济效益和创新能力,又可以利用大数据分析不同买家的信息和行为,从而细分市场,卓有成效地将潜在市场变为现实市场。在宏观经济运行过程中,云治理能够兼顾发挥市场在资源配置中决定性作用和更好发挥政府作用这两个方面。对于政府部门而言,建立用数据说话、用数据决策、用数据管理、用数据创新的调控机制,可以使各项大政方针更加科学有效,同时有利于简政放权、推进政府职能转变、建设现代政府。
防范和化解云治理安全问题。云治理所依赖的大数据是基础性战略资源,当然也是国家安全极为重要的组成部分。云治理安全不仅涉及网络空间的安全、云领域效率与秩序,还涉及云数据相关领域的安全。在国际竞争中,各国对大数据的开发、利用与保护的竞争日趋激烈,数据控制权已经成为继制海权、制陆权、制空权之后的重要争夺对象。比如,与石油和天然气管道、水、电力、交通、金融、军事和外交等相关的数据信息,都有可能成为被窃取或攻击的目标。针对大数据时代经济社会运行的复杂性、挑战性,要牢固树立安全意识,提升数据采集能力、监控能力、分析能力以及网络空间保护能力,建立监测灵敏的反应和治理体系,加强对治理风险以及相关安全的预测分析和监控防范,大幅提升云治理的综合实力,有效保障数据安全、信息安全,确保在全球激烈的大数据竞争中不吃亏。
总之,大数据可以为治理精准化提供科学依据,云治理是治理现代化的重要途径。要高效采集、有效整合、科学运用各类大数据加强和创新治理,同时注意防范和化解风险,更好发挥云治理在治理体系和治理能力现代化中的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22