京公网安备 11010802034615号
经营许可证编号:京B2-20210330
工业大数据在未来工业4.0和物联网的技术地位
工业大数据是指工业设备在生产过程中所产生的大量多样性的数据,其因物联网而广为人知。工业大数据因2012年“工业4.0”概念的出现而被重视,旨在以工业设备产生的数据为基础,通过大数据技术进行处理并且挖掘出更多的商业价值。
工业大数据的特点
工业大数据利用工业网络技术对原始数据进行处理,为管理决策提供依据,达到降低维护成本、改善客户关系的目的。
工业大数据要更麻烦
大数据一般具有3V的特点,即Volume(大量)、Velocity(高速)、Variety(多样),因此其以传统工具难以处理,只能采用新的策略进行存储分析等。而工业大数据则还有其自己的两个V。一个是visibility(可见性),即需要发现对现有资产和生产过程难以察觉的见解,并且以数据形式变为可见;另一个则是Value(价值),由于行业面临的风险及影响差异,工业大数据被要求有更高的精准度,否则其价值将会大打折扣。
工业大数据相比其他大数据来看,其结构化数据更多,相关性和实时性更强,也更易于分析。这是因为工业数据普遍是由自动化设备在生产过程中产生的,其环境和操作受到人为因素影响较小,不会产生太多不可控因素。
工业大数据的分析更侧重于关系挖掘和现象捕捉。一般来讲,工业大数据可以在现象中提取出的特征会涉及诸多的物理学科等问题,有效的分析将会比普通大数据涉及的知识领域更为宽泛,其分析困难程度可见。
工业大数据侧重现象捕捉
工业大数据面临着碎片化问题。工业大数据的分析对数据的完整性有着一定要去,因此其数据驱动分析系统需要从不同的工作条件中获取数据。但是在不同来源获取的数据存在离散和非同步的问题,因此需要预处理以保障数据的完整性、连续性和同步性。
工业大数据的挑战
工业大数据还面临质量差的难关。通常大数据分析的重点在数据挖掘,以数据的量来弥补数据的质缺陷。可是工业大数据中,变量通常具有明确的物理意义,数据完整性对于分析系统至关重要,低质量的数据可能彻底改变两个变量间的关系,对于高精度的分析可能造成灾难性的影响。
工业大数据更需要实时分析和可视化
其与传统商业智能不同,传统BI的处理工作主要集中于数据内部的结构化,并且定期进行周期性处理即可。而工业大数据的分析系统则要求达到实时分析和可视化处理结果。
鉴于这些特点的存在,工业大数据并不能简单的移植普通大数据的分析技术直接使用。工业大数据需要采用的是对于相关领域知识更了解,分析系统功能定义明确,分析速度快并且可以提供更明确的分析策略的大数据分析手段。
工业大数据的技术
工业大数据的不断增加为其后续处理工作制造了麻烦。由于自动化工业设备的不断增多,工业大数据产生的速度和数量都在暴涨,这对大数据的存储和管理的基础设施形成挑战。
工业大数据首先需要确保能够采集正确的数据。上文提到工业大数据对数据的要求更为苛刻,数据完整性的前提是数据的正确程度。当传感器提供的数据越来越多时,识别出与设备状态相关的参数减少非必要数据,提高数据的分析效率,确保获取有效数据。
图工业大数据推进工业4.0发展
其次应当建立适当的数据管理系统。工业大数据的存储需要能够处理大量数据并且做到实时分析,以便于迅速为决策提供支持,为了提高速度,这就需要存储、管理和处理更为集成化。这对数据存储基础设施有较高要求,需要在能够处理高速度、高数量的数据流的同时进行数据分析,这一步将会是未来工业大数据行业的核心和基础。
信息物理系统(CPS,Cyber-Physical Systems)也是工业大数据的核心技术。信息物理系统是计算进程和物理进程之间无缝集成的系统。与传统操作技术有着明显不同,工业大数据需要在更广泛的角度来进行决策,其核心部分在于设备状态。
信息物理系统是工业大数据的核心技术
信息物理系统的重点在于5C架构(Connection,Conversion,Cyber,Cognition,Configuration,即连接,转换,网络,认知,配置)。该架构意为将原数据传输并转换为可操作信息,利用分析洞察数据,最终通过知情决策改进流程。这一步将会进一步提高生产力降低成本。
在工业系统中,每时每刻都在由不同设备产生大量的数据。每一条流水线大量的机械会产生不同的数据样本,例如波音787每天航班都会产生超过5TB的数据,工业系统所产生的数据远远超过了传统方法的处理能力,因此对于管理和处理都构成了极大的挑战。
工业大数据撑起物联网
为了应对这一挑战,企业和研究人员都在收集、统计、存储和分析工业大数据集方面做出了努力,将一些数据集公布用于科研。不过即便如此,工业大数据所面临的压力依然巨大。但是,工业大数据是未来工业4.0和物联网的核心技术之一,工业大数据的发展提高生产水平的必要环节。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24