
简历消亡的大数据招聘时代,这6个特质让你脱颖而出
招聘一直以来是作为一门艺术存在的,但是它正逐渐转变成一门科学。如今大部分工作与工作产品基本上都是数字化的,有时你甚至不需要简历。公司可以轻易地通过互联网搜索到应聘者职业生涯的潜在数据,将大数据技术应用到多年的员工调查和测试中,甚至从专门设计的游戏中获取新数据。
“关于某个人是谁,做什么工作等信息其实早已存储在他们的硬盘、Evernote、box.net账号或者Dropbox云账号中了。”人才搜索企业Talentbin的首席执行官Peter Kazanjy说。
简历正在消亡。与此同时,大学排名和成绩也已不再那么重要。2013年,谷歌人员分析部门的副总Prasad Setty就曾表示,谷歌长期筛选应聘人员的两项指标——美国学术能力测试(SAT)成绩和大学平均绩点——已经无法评估一个人的成就了,而且“不会再被当作重要的招聘标准”。Knack公司的CEO Guy Halfteck也认为,学校排名和个人平均绩点对于人本身以及潜力而言并不是很有意义,以此来量化成功是不具有影响力的。
为了找出成功和创新员工有哪些特征,Knack将先进的数据分析工具和游戏结合在了一起,通过一系列游戏实时观察目标对象的实际行为和表现。由于计算机可以从用户参与游戏的每一个瞬间获得有用的数据,15分钟游戏就足以创造100万字节的数据。因此领导者最终获取到的不只是完美的简历,更有应聘者的社交能力、适应力、情商等多方面信息。
在大数据面前,应聘者无处可藏。而以下这6个特质,或许可以助你脱颖而出。
适应力
对于每份工作来说,“学习敏捷”都是一种重要品质,这是指迅速学习并主动采取行动的能力。“公司想要的是一个能快速适应新环境、在挑战中蓬勃发展、愿意学习新东西的人。” 在德勤咨询公司创始人乔希·贝辛看来,那些表现最好的人不是需要被告知需要做什么的人,而是那些喜欢挑战的人,他们自己寻找资讯,并快速适应环境。遵循指令的人是可以被取代的,只有那些能投入新环境里并茁壮成长的人才真正有价值。
心理韧性
Kenexa公司首席营销官Tim Geisert说:“在大多数人心目中,一个好的销售人员必须是一个外向的人,拥有良好的人际关系和友好态度。这只说对了一部分。我们从数据中发现,实际上还有一种比其他特质都重要的潜在特质,那就是所谓的‘情感勇气’。”拥有“情感勇气”的人心理韧性强,他们能够以积极,乐观的态度来迎接生活中的挑战,更容易拥有幸福和满足的生活。
社交能力和情商
每一份工作中,社交能力都是成功的主要因素之一。如果你提出一个有创意的想法,但是你没有办法说服别人,它可能就无法实现,而这并不是创造力的问题。
“我们所做的每件事,以及公司计划,都需要与他人互动。”Halfteck认为,无论你是创新者、医生、老师、零售商,或者销售人员,你的社交能力都能让你巧妙地管理各种社会状况,回应他人,理智地厘清社会情况及其背后原因。“社交能力可以将表现更好的人从群体中区分出来。”
不同的文化背景
据乔希·贝辛介绍,一家石油公司对石油生产领域里突围并获得成功的人进行分析后,得到了令人惊讶的结果:大部分成功者都是在一个聚集不同类型的人的环境中长大,他们的父母都拥有多元文化或者国际经验。而当这家石油公司以传统方式找到的那些拥有石油学位、良好学术资历的应聘者,却未能从中发现成功者。
态度友好
与乔希·贝辛合作的一家影院尝试通过训练来提高每个员工的服务水平,但6到9个月的培训并没有产生效果。最终,人力资源部门负责人发现,关键不在培训,而在于人本身。随后,该公司的招聘标准从以往成绩、学历和学位调整为快乐个性、友好的态度,喜欢服务他人。这个改变给他们带来的回报是数百万美元。
专业度
越来越多的雇主开始寻找所谓的被动应聘者。他们相信那个没有主动找工作的人,或许就是最佳人选。当然,如果你专业度不够,也很难被找到。招聘人员越来越依赖数据、技能和资格来决定谁来面试,并找到合适的人选,而不再是费神地筛选几百份简历。因此简历写得再漂亮,还不如提高自己的专业水平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12