
S常用函数参考(R常用函数参考)
S常用函数参考
这一节分类列出常用的函数,需要时可以参看帮助。
基本
一、数据管理
vector:向量 numeric:数值型向量 logical:逻辑型向量
character;字符型向量 list:列表 data.frame:数据框
c:连接为向量或列表 length:求长度 subset:求子集
seq,from:to,sequence:等差序列
rep:重复 NA:缺失值 NULL:空对象
sort,order,unique,rev:排序
unlist:展平列表
attr,attributes:对象属性
mode,typeof:对象存储模式与类型
names:对象的名字属性
二、字符串处理
character:字符型向量 nchar:字符数 substr:取子串
format,formatC:把对象用格式转换为字符串
paste,strsplit:连接或拆分
charmatch,pmatch:字符串匹配
grep,sub,gsub:模式匹配与替换
三、复数
complex,Re,Im,Mod,Arg,Conj:复数函数
四、因子
factor:因子 codes:因子的编码 levels:因子的各水平的名字
nlevels:因子的水平个数 cut:把数值型对象分区间转换为因子
table:交叉频数表 split:按因子分组
aggregate:计算各数据子集的概括统计量
tapply:对“不规则”数组应用函数
数学
一、计算
+, -, *, /, ^, %%, %/%:四则运算
ceiling,floor,round,signif,trunc,zapsmall:舍入
max,min,pmax,pmin:最大最小值
range:最大值和最小值
sum,prod:向量元素和,积
cumsum,cumprod,cummax,cummin:累加、累乘
sort:排序
approx和approx fun:插值
diff:差分
sign:符号函数
二、数学函数
abs,sqrt:绝对值,平方根
log, exp, log10, log2:对数与指数函数
sin,cos,tan,asin,acos,atan,atan2:三角函数
sinh,cosh,tanh,asinh,acosh,atanh:双曲函数
beta,lbeta,gamma,lgamma,digamma,trigamma,tetragamma,pentagamma,choose ,lchoose:与贝塔函数、伽玛函数、组合数有关的特殊函数
fft,mvfft,convolve:富利叶变换及卷积
polyroot:多项式求根
poly:正交多项式
spline,splinefun:样条差值
besselI,besselK,besselJ,besselY,gammaCody:Bessel函数
deriv:简单表达式的符号微分或算法微分
三、数组
array:建立数组 matrix:生成矩阵
data.matrix:把数据框转换为数值型矩阵
lower.tri:矩阵的下三角部分 mat.or.vec:生成矩阵或向量
t:矩阵转置 cbind:把列合并为矩阵 rbind:把行合并为矩阵
diag:矩阵对角元素向量或生成对角矩阵
aperm:数组转置 nrow, ncol:计算数组的行数和列数
dim:对象的维向量 dimnames:对象的维名
row/colnames:行名或列名 %*%:矩阵乘法
crossprod:矩阵交叉乘积(内积) outer:数组外积
kronecker:数组的Kronecker积 apply:对数组的某些维应用函数
tapply:对“不规则”数组应用函数 sweep:计算数组的概括统计量
aggregate:计算数据子集的概括统计量 scale:矩阵标准化
matplot:对矩阵各列绘图 cor:相关阵或协差阵
Contrast:对照矩阵 row:矩阵的行下标集
col:求列下标集
四、线性代数
solve:解线性方程组或求逆 eigen:矩阵的特征值分解
svd:矩阵的奇异值分解 backsolve:解上三角或下三角方程组
chol:Choleski分解 qr:矩阵的QR分解
chol2inv:由Choleski分解求逆
五、逻辑运算
<,>,<=,>=,==,!=:比较运算符
!,&,&&,|,||,xor():逻辑运算符
logical:生成逻辑向量 all,any:逻辑向量都为真或存在真
ifelse():二者择一 match,%in%:查找
unique:找出互不相同的元素 which:找到真值下标集合
duplicated:找到重复元素
六、优化及求根
optimize,uniroot,polyroot:一维优化与求根
程序设计
一、控制结构
if,else,ifelse,switch:分支
for,while,repeat,break,next:循环
apply,lapply,sapply,tapply,sweep:替代循环的函数。
二、函数
function:函数定义 source:调用文件 call:函数调用
.C,.Fortran:调用C或者Fortran子程序的动态链接库。
Recall:递归调用
browser,debug,trace,traceback:程序调试
options:指定系统参数 missing:判断虚参是否有对应实参
nargs:参数个数 stop:终止函数执行
on.exit:指定退出时执行 eval,expression:表达式计算
system.time:表达式计算计时 invisible:使变量不显示
menu:选择菜单(字符列表菜单)
其它与函数有关的还有:delay,delete.response,deparse,do.call,dput,environment ,,formals,format.info,interactive,is.finite,is.function,is.language,is.recursive ,match.arg,match.call,match.fun,model.extract,name,parse,substitute,sys.parent ,warning,machine。
三、输入输出
cat,print:显示对象
sink:输出转向到指定文件
dump,save,dput,write:输出对象
scan,read.table,load,dget:读入
四、工作环境
ls,objects:显示对象列表 rm, remove:删除对象
q,quit:退出系统 .First,.Last:初始运行函数与退出运行函数。
options:系统选项 ?,help,help.start,apropos:帮助功能
data:列出数据集
统计计算
一、统计分布
每一种分布有四个函数:d――density(密度函数),p――分布函数,q――分位数 函数,r――随机数函数。比如,正态分布的这四个函数为dnorm,pnorm,qnorm,rnorm。下 面我们列出各分布后缀,前面加前缀d、p、q或r就构成函数名:
norm:正态,t:t分布,f:F分布,chisq:卡方(包括非中心)
unif:均匀,exp:指数,weibull:威布尔,gamma:伽玛,beta:贝塔
lnorm:对数正态,logis:逻辑分布,cauchy:柯西,
binom:二项分布,geom:几何分布,hyper:超几何,nbinom:负二项,pois:泊松
signrank:符号秩,wilcox:秩和,tukey:学生化极差
二、简单统计量
sum, mean, var, sd, min, max, range, median, IQR(四分位间距)等为统计 量,sort,order,rank与排序有关,其它还有ave,fivenum,mad,quantile,stem等。
三、统计检验
R中已实现的有chisq.test,prop.test,t.test。
四、多元分析
cor,cov.wt,var:协方差阵及相关阵计算
biplot,biplot.princomp:多元数据biplot图
cancor:典则相关 princomp:主成分分析
hclust:谱系聚类 kmeans:k-均值聚类
cmdscale:经典多维标度
其它有dist,mahalanobis,cov.rob。
五、时间序列
ts:时间序列对象 diff:计算差分 time:时间序列的采样时间 window:时间窗
六、统计模型
lm,glm,aov:线性模型、广义线性模型、方差分析
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15