
大数据商业变现模式——大数据洞察报告质量有待提升
大数据洞察报告是一种典型大数据商业变现模式,当前网上充斥着乱花渐欲迷人眼的各类企业展示大数据肌肉的洞察报告,大众甚至有点审美疲劳了,但无论看起来多么美好,如果想变现,都需要经历市场的真正历练。
从笔者的实践看,这种变现模式当前还难言成功,甚至是差强人意,为什么
最近听了薛兆丰老师的北大经济学几节课后,很多东西豁然开朗,不少领域的问题实际都可以用经济学的原理来解释。
一、大数据洞察报告很难形成反馈
首先,让我们回归市场经济的本质,大数据洞察报告所以难以变现,是因为它很难量化,无法获得商品使用的有效反馈。
大数据洞察报告作为一种决策辅助工具,真正的买单者应该是企业的管理者,不同于其他的商品,这类决策报告的价值实际是传递一些信息,发现一些规律,其离企业最终采取行动获得效益距离还很远,企业由于某项措施取得了经济利益,到底是决策报告的功劳,还是领导者自身的英明,很难说清。
市场是不确定的,在企业的重点决策会上,数据分析师其实扮演着很小的角色,大多需要领导睿智的决定,是一种经验的直觉吧。
当前即使如直面客户的精准广告的效果都备受质疑,更别说此种形式了,这是有深层次经济学原因的。
为什么慈善很难做 投给非洲的援助资金不可谓不多,但然并卵,穷的地方照样穷,因为我们的慈善家的钱的价值没有获得反馈,大家如瞎子一样的投钱,但不知道这些钱到底产生了什么价值,有什么问题,如何改进
陈光标为了确保慈善的钱能发挥价值,特地还现场发钱,其实也没啥用,谁知道受捐人拿着这个钱,是满足正常的生活和生产用,还是交给败家的儿子一赌了之。
大数据洞察报告垂直的行业特性还非常严重,受众面较窄,甚至是一棍子买卖,进一步阻碍了改良的可能。
行业咨询分析、BI专题分析曾经大行其道,深的企业青睐,但现在显然少了,最为诟病的要么是没法落地执行,要么效果差强人意。
二、大数据洞察报告的质量很难评估
首先,当然是前面提到的效果间接性的原因,使得市场无法直接给予评价,其次,靠企业的自觉自律很难,商人毕竟是逐利的,都希望用最小的代价获取最高的回报,从数据到报告,中间环节能操作的空间太大了,一份注水的报告很容易出炉。
比如APP洞察报告,大家知道要全国的数据有多么困难吗 为什么市场充斥着这么多APP报告 为什么连没有数据的企业也能出 为什么一个小APP商家都能出
因为太容易了,一个互联网公司依托自己的APP抓取用户终端的APP使用信息不是难事,然后按比例推广到全国人民就可以了,统计学里有太多的造数据的方法可以适用,你不能说它错吧,反正是统计一个规律嘛,不用较真。
号称拥有位置数据的很多公司,有多少数据是真实的用户轨迹数据,有多少是拟合出来的,水分有多大,客户又不知道,市面上、媒体上这么多可视化的出行、迁移洞察报告,有多少经得起数据真实性的考验,吃光群众图个热闹,不懂的媒体直呼大数据好厉害,理性的客户真得会为其买单
搞数据的都知道口径是个啥玩意,我们的分析师也知道让口径吻合客户的需求和自己的需求是一门艺术。
没有一些标准,这个市场就会比较乱。
三、大多客户对于大数据还持观望态度
一方面是客户的企业数据文化还处于起步阶段,从认识到接受有个过程,认为大数据是大忽悠的不在少数,他们跟你接触也仅仅是想了解下,另一方面是客户对于你的数据不熟悉,需要通过交流互动建立信任关系,这又是个较长的过程,我们接触了大量的客户,都是这个状况。
比如很多客户提出了POC的要求,只有数据分析的结果满足要求才愿意买单,这又牵扯到如何开放清单数据等一系列问题,大数据洞察报告从简单的商品销售变成了一个长流程的工作,短期要起规模和量,显然是不可能了。
四、大数据企业自身能力还有待提升
大数据洞察报告是关于行业的深度洞察,需要的往往是标签,而不是原始数据,比如某商场选址需要提供职业分析,但运营商原始数据并没有这类属性,需要通过建模等方式去打造,这对于企业的能力提出了很高的要求,在短时间内很难具备。
笔者以前就强调运营商的数据并不是金矿,最多是页岩油,要去电信化,在数据建模上要舍得投入,否则,就没有竞争力,拥有大数据并不代表就有变现能力。
另一方面要真正打造适用某个垂直行业的洞察报告,需要对于这个行业的业务有所理解,显然,对很多大数据企业是不可能完成的任务,一般的企业哪有那么数据分析师去研究各个各业,这是巨大的挑战。
五、大数据洞察报告的市场竞争加剧
不仅在行业间存在竞争,每个行业内也存在竞争关系,就拿运营商来说,对于APP洞察,电信、联通、移动有竞争,每个运营商内的省公司之间也有竞争,如果这块蛋糕很大,BAT和一众互联网公司肯定也少不了。
很多大数据洞察报告还千篇一律,没有什么差异化,为了宣传,很多数据就直接放到了网上,变相造成了价值的贬值。
一定程度上,销售洞察报告拼的就是销售和人脉了,而不是真正的数据和技术。
提了五点,想要说明的就是大数据洞察报告的变现窘境是有深层次原因的,并不如外人轻描淡写的那么容易,虽然听到过很多关于洞察报告的辉煌业绩,但笔者也总是抱着谨慎的怀疑态度的。
即使在这类商业模式变现后,作为业内人士还是要有清醒的认识,你能卖掉这份大数据报告的真正原因是什么,到底是源于这份报告的真正价值,还是属于销售的产物、人脉的产物、捆绑销售的产物、商品交换的产物、收入分摊的产物
最后,笔者提两点建议吧,一是对着客户的,如果真有报告的诉求,尽量找有原生数据的大数据企业,数据质量决定报告质量,诸如运营商是个很好的选择,二是对着企业的,要打好数据基础,汇聚多方能力,找个好的咨询分析合作伙伴,不玩生态很难有钱途。
虽然我也如一个囚徒,正寻找着大数据洞察报告的光明。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15