京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python分治法定义与应用实例详解
本文实例讲述了Python分治法定义与应用。分享给大家供大家参考,具体如下:
分治法所能解决的问题一般具有以下几个特征:
1) 该问题的规模缩小到一定的程度就可以容易地解决
2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3) 利用该问题分解出的子问题的解可以合并为该问题的解;
4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;
第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;
第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。
第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
题目1. 给定一个顺序表,编写一个求出其最大值的分治算法。
# 基本子算法(子问题规模小于等于 2 时)
def get_max(max_list):
return max(max_list) # 这里偷个懒!
# 分治法 版本一
def solve(init_list):
n = len(init_list)
if n <= 2: # 若问题规模小于等于 2,最终解决
return get_max(init_list)
# 分解(子问题规模为 2,最后一个可能为 1)
temp_list=(init_list[i:i+2] for i in range(0, n, 2))
# 分治,合并
max_list = list(map(get_max, temp_list))
# 递归(树)
solve(max_list)
# 分治法 版本二
def solve2(init_list):
n = len(init_list)
if n <= 2: # 若问题规模小于等于 2,解决
return get_max(init_list)
# 分解(子问题规模为 n/2)
left_list, right_list = init_list[:n//2], init_list[n//2:]
# 递归(树),分治
left_max, right_max = solve2(left_list), solve2(right_list)
# 合并
return get_max([left_max, right_max])
if __name__ == "__main__":
# 测试数据
test_list = [12,2,23,45,67,3,2,4,45,63,24,23]
# 求最大值
print(solve(test_list)) # 67
print(solve2(test_list)) # 67
题目2. 给定一个顺序表,判断某个元素是否在其中。
# 子问题算法(子问题规模为 1)
def is_in_list(init_list, el):
return [False, True][init_list[0] == el]
# 分治法
def solve(init_list, el):
n = len(init_list)
if n == 1: # 若问题规模等于 1,直接解决
return is_in_list(init_list, el)
# 分解(子问题规模为 n/2)
left_list, right_list = init_list[:n//2], init_list[n//2:]
# 递归(树),分治,合并
res = solve(left_list, el) or solve(right_list, el)
return res
if __name__ == "__main__":
# 测试数据
test_list = [12,2,23,45,67,3,2,4,45,63,24,23]
# 查找
print(solve2(test_list, 45)) # True
print(solve2(test_list, 5)) # False
题目3. 找出一组序列中的第 k 小的元素,要求线性时间
# 划分(基于主元 pivot),注意:非就地划分
def partition(seq):
pi = seq[0] # 挑选主元
lo = [x for x in seq[1:] if x <= pi] # 所有小的元素
hi = [x for x in seq[1:] if x > pi] # 所有大的元素
return lo, pi, hi
# 查找第 k 小的元素
def select(seq, k):
# 分解
lo, pi, hi = partition(seq)
m = len(lo)
if m == k:
return pi # 解决!
elif m < k:
return select(hi, k-m-1) # 递归(树),分治
else:
return select(lo, k) # 递归(树),分治
if __name__ == '__main__':
seq = [3, 4, 1, 6, 3, 7, 9, 13, 93, 0, 100, 1, 2, 2, 3, 3, 2]
print(select(seq, 3)) #2
print(select(seq, 5)) #2
题目4. 快速排序
# 划分(基于主元 pivot),注意:非就地划分
def partition(seq):
pi = seq[0] # 挑选主元
lo = [x for x in seq[1:] if x <= pi] # 所有小的元素
hi = [x for x in seq[1:] if x > pi] # 所有大的元素
return lo, pi, hi
# 快速排序
def quicksort(seq):
# 若问题规模小于等于1,解决
if len(seq) <= 1: return seq
# 分解
lo, pi, hi = partition(seq)
# 递归(树),分治,合并
return quicksort(lo) + [pi] + quicksort(hi)
seq = [7, 5, 0, 6, 3, 4, 1, 9, 8, 2]
print(quicksort(seq)) #[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
题目5. 合并排序(二分排序)
# 合并排序
def mergesort(seq):
# 分解(基于中点)
mid = len(seq) // 2
left_seq, right_seq = seq[:mid], seq[mid:]
# 递归(树),分治
if len(left_seq) > 1: left_seq = mergesort(left_seq)
if len(right_seq) > 1: right_seq = mergesort(right_seq)
# 合并
res = []
while left_seq and right_seq: # 只要两者皆非空
if left_seq[-1] >= right_seq[-1]: # 两者尾部较大者,弹出
res.append(left_seq.pop())
else:
res.append(right_seq.pop())
res.reverse() # 倒序
return (left_seq or right_seq) + res # 前面加上剩下的非空的seq
seq = [7, 5, 0, 6, 3, 4, 1, 9, 8, 2]
print(mergesort(seq)) #[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
题目6. 汉诺塔
# 汉诺塔
def move(n, a, buffer, c):
if n == 1:
print(a,"->",c)
#return
else:
# 递归(线性)
move(n-1, a, c, buffer)
move(1, a, buffer, c) # 或者:print(a,"->",c)
move(n-1, buffer, a, c)
move(3, "a", "b", "c")
问题7. 爬楼梯
假设你正在爬楼梯,需要n步你才能到达顶部。但每次你只能爬一步或者两步,你能有多少种不同的方法爬到楼顶部?
# 爬楼梯
def climb(n=7):
if n <= 2:
return n
return climb(n-1) + climb(n-2) # 等价于斐波那契数列!
print(climb(5)) # 8
print(climb(7)) # 21
问题8. 给定平面上n个点,找其中的一对点,使得在n个点的所有点对中,该点对的距离最小。(最近点对问题)
from math import sqrt
# 蛮力法
def solve(points):
n = len(points)
min_d = float("inf") # 最小距离:无穷大
min_ps = None # 最近点对
for i in range(n-1):
for j in range(i+1, n):
d = sqrt((points[i][0] - points[j][0])**2 + (points[i][1] - points[j][1])**2) # 两点距离
if d < min_d:
min_d = d # 修改最小距离
min_ps = [points[i], points[j]] # 保存最近点对
return min_ps
# 最接近点对(报错!)
def nearest_dot(seq):
# 注意:seq事先已对x坐标排序
n = len(seq)
if n <= 2: return seq # 若问题规模等于 2,直接解决
# 分解(子问题规模n/2)
left, right = seq[0:n//2], seq[n//2:]
print(left, right)
mid_x = (left[-1][0] + right[0][0])/2.0
# 递归,分治
lmin = (left, nearest_dot(left))[len(left) > 2] # 左侧最近点对
rmin = (right, nearest_dot(right))[len(right) > 2] # 右侧最近点对
# 合并
dis_l = (float("inf"), get_distance(lmin))[len(lmin) > 1]
dis_r = (float("inf"), get_distance(rmin))[len(rmin) > 1]
d = min(dis_l, dis_r) # 最近点对距离
# 处理中线附近的带状区域(近似蛮力)
left = list(filter(lambda p:mid_x - p[0] <= d, left)) #中间线左侧的距离<=d的点
right = list(filter(lambda p:p[0] - mid_x <= d, right)) #中间线右侧的距离<=d的点
mid_min = []
for p in left:
for q in right:
if abs(p[0]-q[0])<=d and abs(p[1]-q[1]) <= d: #如果右侧部分点在p点的(d,2d)之间
td = get_distance((p,q))
if td <= d:
mid_min = [p,q] # 记录p,q点对
d = td # 修改最小距离
if mid_min:
return mid_min
elif dis_l>dis_r:
return rmin
else:
return lmin
# 两点距离
def get_distance(min):
return sqrt((min[0][0]-min[1][0])**2 + (min[0][1]-min[1][1])**2)
def divide_conquer(seq):
seq.sort(key=lambda x:x[0])
res = nearest_dot(seq)
return res
# 测试
seq=[(0,1),(3,2),(4,3),(5,1),(1,2),(2,1),(6,2),(7,2),(8,3),(4,5),(9,0),(6,4)]
print(solve(seq)) # [(6, 2), (7, 2)]
#print(divide_conquer(seq)) # [(6, 2), (7, 2)]
问题9. 从数组 seq 中找出和为 s 的数值组合,有多少种可能
'''
求一个算法:N个数,用其中M个任意组合相加等于一个已知数X。得出这M个数是哪些数。
比如:
seq = [1, 2, 3, 4, 5, 6, 7, 8, 9]
s = 14 # 和
全部可能的数字组合有:
5+9, 6+8
1+4+9, 1+5+8, 1+6+7, 2+3+9, 2+4+8, 2+5+7, 3+4+7, 3+5+6
1+2+5+6, 1+3+4+6, 1+2+4+7, 1+2+3+8, 2+3+4+5
共计15种
'''
# 版本一(纯计数)
def find(seq, s):
n = len(seq)
if n==1:
return [0, 1][seq[0]==s]
if seq[0]==s:
return 1 + find(seq[1:], s)
else:
return find(seq[1:], s-seq[0]) + find(seq[1:], s)
# 测试
seq = [1, 2, 3, 4, 5, 6, 7, 8, 9]
s = 14 # 和
print(find(seq, s)) # 15
seq = [11,23,6,31,8,9,15,20,24,14]
s = 40 # 和
print(find(seq, s)) #8
# 版本二 (打印)
def find2(seq, s, tmp=''):
if len(seq)==0: # 终止条件
return
if seq[0] == s: # 找到一种,则
print(tmp + str(seq[0])) # 打印
find2(seq[1:], s, tmp) # 尾递归 ---不含 seq[0] 的情况
find2(seq[1:], s-seq[0], str(seq[0]) + '+' + tmp) # 尾递归 ---含 seq[0] 的情况
# 测试
seq = [1, 2, 3, 4, 5, 6, 7, 8, 9]
s = 14 # 和
find2(seq, s)
print()
seq = [11,23,6,31,8,9,15,20,24,14]
s = 40 # 和
find2(seq, s)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22