
笔者寄语:异常值处理一般分为以下几个步骤:异常值检测、异常值筛选、异常值处理。其中异常值检测的方法主要有:箱型图、简单统计量(比如观察极值)
异常值处理方法主要有:删除法、插补法、替换法。
提到异常值不得不说一个词:鲁棒性。就是不受异常值影响,一般是鲁棒性高的数据,比较优质。
一、异常值检验
异常值大概包括缺失值、离群值、重复值,数据不一致。
1、基本函数
summary可以显示每个变量的缺失值数量.
2、缺失值检验
关于缺失值的检测应该包括:缺失值数量、缺失值比例、缺失值与完整值数据筛选。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#缺失值解决方案
sum(complete.cases(saledata)) #is.na(saledata)
sum(!complete.cases(saledata))
mean(!complete.cases(saledata)) #1/201数字,缺失值比例
saledata[!complete.cases(saledata),] #筛选出缺失值的数值
3、箱型图检验离群值
箱型图的检测包括:四分位数检测(箱型图自带)+1δ标准差上下+异常值数据点。
箱型图有一个非常好的地方是,boxplot之后,结果中会自带异常值,就是下面代码中的sp$out,这个是做箱型图,按照上下边界之外为异常值进行判定的。
上下边界,分别是Q3+(Q3-Q1)、Q1-(Q3-Q1)。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
sp=boxplot(saledata$"销量",boxwex=0.7)
title("销量异常值检测箱线图")
xi=1.1
sd.s=sd(saledata[complete.cases(saledata),]$"销量")
mn.s=mean(saledata[complete.cases(saledata),]$"销量")
points(xi,mn.s,col="red",pch=18)
arrows(xi, mn.s - sd.s, xi, mn.s + sd.s, code = 3, col = "pink", angle = 75, length = .1)
text(rep(c(1.05,1.05,0.95,0.95),length=length(sp$out)),labels=sp$out[order(sp$out)],
sp$out[order(sp$out)]+rep(c(150,-150,150,-150),length=length(sp$out)),col="red")
代码中text函数的格式为text(x,label,y,col);points加入均值点;arrows加入均值上下1δ标准差范围箭头。
4、数据去重
数据去重与数据分组合并存在一定区别,去重是纯粹的所有变量都是重复的,而数据分组合并可能是因为一些主键的重复。
数据去重包括重复检测(table、unique函数)以及重复数据处理(unique/duplicated)。
常见的有unique、数据框中duplicated函数,duplicated返回的是逻辑值。
二、异常值处理
常见的异常值处理办法是删除法、替代法(连续变量均值替代、离散变量用众数以及中位数替代)、插补法(回归插补、多重插补)
除了直接删除,可以先把异常值变成缺失值、然后进行后续缺失值补齐。
实践中,异常值处理,一般划分为NA缺失值或者返回公司进行数据修整(数据返修为主要方法)
1、异常值识别
利用图形——箱型图进行异常值检测。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#异常值识别
par(mfrow=c(1,2))#将绘图窗口划为1行两列,同时显示两图
dotchart(inputfile$sales)#绘制单变量散点图,多兰图
pc=boxplot(inputfile$sales,horizontal=T)#绘制水平箱形图
2、盖帽法
整行替换数据框里99%以上和1%以下的点,将99%以上的点值=99%的点值;小于1%的点值=1%的点值。
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
#异常数据处理
q1<-quantile(result$tot_derog, 0.001) #取得时1%时的变量值
q99<-quantile(result$tot_derog, 0.999) #replacement has 1 row, data has 0 说明一个没换
result[result$tot_derog result[result$tot_derog>q99,]$tot_derog<-q99
summary(result$tot_derog) #盖帽法之后,查看数据情况
fix(inputfile)#表格形式呈现数据
which(inputfile$sales==6607.4)#可以找到极值点序号是啥
把缺失值数据集、非缺失值数据集分开。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#缺失值的处理
inputfile$date=as.numeric(inputfile$date)#将日期转换成数值型变量
sub=which(is.na(inputfile$sales))#识别缺失值所在行数
inputfile1=inputfile[-sub,]#将数据集分成完整数据和缺失数据两部分
inputfile2=inputfile[sub,]
3、噪声数据处理——分箱法
将连续变量等级化之后,不同的分位数的数据就会变成不同的等级数据,连续变量离散化了,消除了极值的影响。
4、异常值处理——均值替换
数据集分为缺失值、非缺失值两块内容。缺失值处理如果是连续变量,可以选择均值;离散变量,可以选择众数或者中位数。
计算非缺失值数据的均值,
然后赋值给缺失值数据。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#均值替换法处理缺失,结果转存
#思路:拆成两份,把缺失值一份用均值赋值,然后重新合起来
avg_sales=mean(inputfile1$sales)#求变量未缺失部分的均值
inputfile2$sales=rep(avg_sales,n)#用均值替换缺失
result2=rbind(inputfile1,inputfile2)#并入完成插补的数据
5、异常值处理——回归插补法
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#回归插补法处理缺失,结果转存
model=lm(sales~date,data=inputfile1)#回归模型拟合
inputfile2$sales=predict(model,inputfile2)#模型预测
result3=rbind(inputfile1,inputfile2)
6、异常值处理——多重插补——mice包
注意:多重插补的处理有两个要点:先删除Y变量的缺失值然后插补
1、被解释变量有缺失值的观测不能填补,只能删除,不能自己乱补;
2、只对放入模型的解释变量进行插补。
比较详细的来介绍一下这个多重插补法。笔者整理了大致的步骤简介如下:
缺失数据集——MCMC估计插补成几个数据集——每个数据集进行插补建模(glm、lm模型)——将这些模型整合到一起(pool)——评价插补模型优劣(模型系数的t统计量)——输出完整数据集(compute)
步骤详细介绍:
函数mice()首先从一个包含缺失数据的数据框开始,然后返回一个包含多个(默认为5个)完整数据集的对象。
每个完整数据集都是通过对原始数据框中的缺失数据进行插补而生成的。 由于插补有随机的成分,因此每个完整数据集都略有不同。
其中,mice中使用决策树cart有以下几个要注意的地方:该方法只对数值变量进行插补,分类变量的缺失值保留,cart插补法一般不超过5k数据集。
然后, with()函数可依次对每个完整数据集应用统计模型(如线性模型或广义线性模型) ,
最后, pool()函数将这些单独的分析结果整合为一组结果。最终模型的标准误和p值都将准确地反映出由于缺失值和多重插补而产生的不确定性。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#多重插补法处理缺失,结果转存
library(lattice) #调入函数包
library(MASS)
library(nnet)
library(mice) #前三个包是mice的基础
imp=mice(inputfile,m=4) #4重插补,即生成4个无缺失数据集
fit=with(imp,lm(sales~date,data=inputfile))#选择插补模型
pooled=pool(fit)
summary(pooled)
result4=complete(imp,action=3)#选择第三个插补数据集作为结果
结果解读:
(1)imp对象中,包含了:每个变量缺失值个数信息、每个变量插补方式(PMM,预测均值法常见)、插补的变量有哪些、预测变量矩阵(在矩阵中,行代表插补变量,列代表为插补提供信息的变量, 1和0分别表示使用和未使用);
同时 利用这个代码imp$imp$sales 可以找到,每个插补数据集缺失值位置的数据补齐具体数值是啥。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
> imp$imp$sales
1 2 3 4
9 3614.7 3393.1 4060.3 3393.1
15 2332.1 3614.7 3295.5 3614.7
(2)with对象。插补模型可以多样化,比如lm,glm都是可以直接应用进去,详情可见《R语言实战》第十五章;
(3)pool对象。summary之后,会出现lm模型系数,可以如果出现系数不显著,那么则需要考虑换插补模型;
(4)complete对象。m个完整插补数据集,同时可以利用此函数输出。
其他:
mice包提供了一个很好的函数md.pattern(),用它可以对缺失数据的模式有个更好的理解。还有一些可视化的界面,通过VIM、箱型图、lattice来展示缺失值情况。
三、离群点检测
离群点检测与第二节异常值主要的区别在于,异常值针对单一变量,而离群值指的是很多变量综合考虑之后的异常值。下面介绍一种基于聚类+欧氏距离的离群点检测方法。
基于聚类的离群点检测的步骤如下:数据标准化——聚类——求每一类每一指标的均值点——每一类每一指标生成一个矩阵——计算欧式距离——画图判断。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
Data=read.csv(".data.csv",header=T)[,2:4]
Data=scale(Data)
set.seed(12)
km=kmeans(Data,center=3)
print(km)
km$centers #每一类的均值点
#各样本欧氏距离,每一行
x1=matrix(km$centers[1,], nrow = 940, ncol =3 , byrow = T)
juli1=sqrt(rowSums((Data-x1)^2))
x2=matrix(km$centers[2,], nrow = 940, ncol =3 , byrow = T)
juli2=sqrt(rowSums((Data-x2)^2))
x3=matrix(km$centers[3,], nrow = 940, ncol =3 , byrow = T)
juli3=sqrt(rowSums((Data-x3)^2))
dist=data.frame(juli1,juli2,juli3)
##欧氏距离最小值
y=apply(dist, 1, min)
plot(1:940,y,xlim=c(0,940),xlab="样本点",ylab="欧氏距离")
points(which(y>2.5),y[which(y>2.5)],pch=19,col="red")
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15