京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与分析是企业创新的核心
在全球的IT发展上,大数据这个领域是最活跃的领域。IBM正在加速向大数据方向转型。“IBM大中华区大数据与分析事业部总经理钟泽敏在最近的媒体沟通会上谈及年初成立了大数据分析事业部的初衷。他表示,IBM此次全球性的调整是根据市场大数据分析做的,把不同的部门重新放在同一个地方。这样对客户的需求反应更快,更合理。另外,他介绍,数据分析部门,主要分三块,一是数据分析的平台。二是解决方案。大数据分析未来发展的方向是以行业为主导的。三是包括行业专家和云服务,包括软件功能、云服务战略、服务团队和市场推广。
在谈及IBM在大数据领域的优势时,钟泽敏认为,IBM比其他公司比较有利的地方,是在于我们对未来市场需求的看法在转变。比如,IBM最近宣布与美国的的Weather company达成合作,通过天气的分析为各行业的商家提供预测的商业数据。
“多年来,IBM在市场上其实最多的积累就是客户的积累,对于各行各业的了解非常深刻,从产品部门到服务部门,对国内的银行、电信、政府、制造、医疗等等各个行业都做过大量的项目,了解客户的业务流程。真正要做到企业级,还是要对企业的业务进行了解,这是IBM的优势。”
认识大数据的两大误区
当我们谈论大数据时往往会形成很多的误区,IBM大中华区大数据与分析事业部数据平台方案总经理刘胜利认为,Hadoop系统的确是大数据有代表性的平台,但是大数据并不等于Hadoop。近2年Spark很热门,是大数据非常火的平台,但是也不意味着大数据就是Spark。
IBM非常强调大数据的分析和挖掘能力,数据多并不是价值,只有把数据里面的商业流程挖掘出来才是大数据的价值。
“一两个抽样数据拿出来,,这不叫大数据。” 刘胜利表示,抽样数据是典型的在计算机产生之前就存在的抽样调查,美国总统选举前做抽样调查,数百年前就已经存在了。
企业级挖掘大数据的价值
毋庸置疑,大数据是当前的潮流,在互联网的应用层出不穷,企业管理决策也越来越受预测性分析和大数据分析的影响,依靠直觉做决定的情况将会被彻底改变。那么,企业级的客户会关心如何应用技术来实现创新?会关心用应用大数据分析系统以后,如何实现高可用性、稳定性、可靠性?
开源可以解决一些问题吗?“开源里面没有一个正式的支持体系,刘胜利认为,太开放了,里面很新,匹配性做得不一定好,这需要做开源的人要有非常高的水平。” “国内能够用开源的这些代码去开发,做二次开发和支撑的企业级用户,不超过10家。刘胜利认为,因为企业的核心竞争力不在IT上,企业的精力应该在核心应用,而不是花大量的时间研究开源。他表示,开源是一件好事,但是对于企业级来讲要打一个问号,要慎重的考虑是不是要用开源,要养最少10个人的团队去做。
刘胜利表示,“IBM在大数据的领域的策略是把大数据应用于企业级。IBM在全球100多年的历史,一直把自己的策略定位为服务于企业级的客户,帮助他们提高竞争力,帮助他们去挣钱。”
企业使用大数据和互联网的企业使用大数据显然有非常明显的不一样,企业级的客户非常关注流程。刘胜利解释,“就是说大数据来了,企业原有的业务流程需要整合。会关注数据的挖掘,而不是堆积数据。更重要的是如何用大数据,不是说技术如何先进,而是技术对于行业创新有什么样的帮助,这是客户最关注的核心。”
“IBM非常强调大数据的分析和挖掘能力,数据多并不是价值,只有把数据里面的商业流程挖掘出来才是大数据的价值。” 刘胜利这样认为。IBM在美国,跟Facebook、Twitter开展战略合作,针对大量的社交数据,帮助企业用户勾勒一个客户360度的视图,做更好、更精准的营销。
流,大数据的热门技术
流是当前大数据当中的一个热门的技术。在9•11之后IBM最早做出来,就是把当前摄像信息、录像信息、监控信息抓出来,能够快速分析、及时预警。目前已经进行了商业化,变成了所谓的流技术。
流可以做什么?刘胜利举三个例子。天气预报的瞬间变换数据采集量非常大,IBM在国内某一个大的河流流域帮助做天气预报的预测,以便于做水力发电和流域自然环境的控制。在航空领域实施流的解决方案。大家一上飞机,空姐就拿上来一张报纸说你是我们的什么客户,送你一张报纸,或者你想吃什么餐。这觉得挺平常的服务,其实背后是采用流计算技术,针对进行毫秒级处理,实时拿到VIP客户的名单。更关键的不光是对于旅客的服务,飞机本身实时数据的监控处理数据量非常大,飞机在飞行过程当中,飞机本身以及飞机相关的各种子系统,和外界交流的这种控制系统产生了大量的信息,这些信息被送到流处理的系统,非常实时的处理,另外,在公共场所、重大节日,一些公园,通过流技术实时采集人流的手机移动信息进行人流监控方面。
“IBM做出来这样的产品,能够迅速把大数据平台搭建起来,聚焦在做行业的应用,做大数据的业务流程改造以及业务的创新,而不是很细节的这些某个产品的技术。”刘胜利表示,“这就是IBM希望做到的,而且已经帮助企业做到的技术。”
IBM的大数据分析产品SPSS
IBM很关注大数据分析,刘胜利认为“IBM关注的是大数据之下的分析,强调的重点是在分析、挖掘、预测。”
他介绍,大数据分析和挖掘用SPSS产品是非常有效的,包括对于客户的保留,同时针对本身的一些运营计划、门类、销售种类、销售预测等等,做到很细节的分析。
对于机器和设备的挖掘也是在广泛使用。在一些产品的制造过程中都会产生次品,这些分析挖掘,及早发现问题,也有利于这些次品早下线,让企业降低生产成本。这是一个制造业的例子,也会广泛的应用到新一代的智能制造当中。保险行业当中,包括客户投诉等等也是广泛应用的。
大数据分析应用于物联网
互联网+是传统行业和互联网的渗透,互相提升。“谈到互联网+概念,其实在所有的概念里面,在所有的战略、方针和趋势当中讨论的是一个核心的技术基础。” IBM大中华区大数据分析事业部行业解决方案总经理刘咏梅认为,是物联网。她介绍,物联网发展重要的趋势就是两化融合就是信息化和工业化的融合。就是因为从信息化的角度和工业化的角度不融合,达不到提高层次,达不到去创新。随着工业4.0 和中国制造2025的发展,会真正加快两化融合的脚步,或者说真正能够从一定程度上实现两化融合。
IBM的物联网是万物互联,强调一个新的生态系统,IBM大中华区大数据与分析事业部市场总监孙丽军认为,“没有任何一个人能够在外部互联中独自完成任务,只有在生态链才能共同完成IoT。”
中国制造2025比较着重于在工业领域、制造领域、消费电子领域等的拓展。刘咏梅认为,中国制造2025或是智能制造,应该是以物联网为基础在某些行业的实践。这么去定位它们之间相互的关系。
IBM在全球是跟其他非常多的相关领域的领导者或者公司在物联网的研究、创新和实践联盟组织中占了非常重要的位置。刘咏梅介绍,在业界有一个工业4.0平台组织,IBM是非常关键的一个组织成员,拥有智慧工厂研究平台,智慧的数据创新实验室和工业互联网联盟。在这个平台贡献想法,交流创新,把自己的想法通过不同的方式去落地和实践,这就是一个组织要去做的事情。
刘咏梅通过某品牌汽车研究汽缸的零件的具体案例,来介绍IBM大数据分析在物联网应用。有两个生产线,其中一条的次品率比别的次品率高。大家都在一个地方,怎么它的次品率就比别的高呢?于是IBM抓取了非常多的历史基础数据,包含环境的数据。最后发现,这个生产线在下午两点的次品率比较高。这是什么原因呢?是因为阳光照射进来温度会高,零件生产之后是液体的应在30秒内固化,因为受温度的影响,这个零件会发脆,严重影响生产。刘咏梅表示,在生产过程当中IBM提供相应的大数据解决方案,在工业4.0和物联网充分释放价值。
大数据分析给生产制造行业带来的价值。在中国怎么往前走?刘咏梅认为,“其实在过程中是不断演进的,要边学习、边研究、边探讨。”她介绍目前普遍认知的过程是,第一阶段,把智能工厂做起来,接下来,把智能工厂和相应的供应链集成在一起,最后,把多个供应链集成在一起。
“在整个打通合作链的过程当中,IBM都有相应的解决方案帮助客户去做。” 刘咏梅认为,在这个场景中进行协同合作,从而进行创新,提升竞争力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01