
一、残差方差齐性判断
1. 残差方差齐性
回顾一下前面介绍过的残差方差齐性,即残差ei的大小不随预测值水平的变化而变化。我们在进行残差分析时,可以通过绘制标准化残差和标准化预测值的散点图来进行判断。若残差满足方差齐性,则标准化残差的散点会在一定区域内,围绕标准化残差ei=0这条直线的上下两侧均匀分布,不随标准化预测值的变化而变化,如图1所示。
2. 残差方差不齐
但有时残差不满足方差齐性的假设,其标准化残差散点图显示,残差的变异程度随着变量取值水平的变化而发生变化,如图2(a)显示标准化残差的分布随变量取值的增大而呈现扩散趋势,图2(b)显示标准化残差的分布随变量取值的增大而呈现收敛趋势,说明残差不满足方差齐性的条件。
二、加权最小二乘法
在多重线性回归模型中,我们采用的是普通最小二乘法(Ordinary Least Square,OLS)来对参数进行估计,即要求每个观测点的实际值与预测值之间的残差平方和最小,对于模型中的每个观测点是同等看待的,残差满足方差齐性的假设。
但是在有些研究问题中,例如调查某种疾病的发病率,以地区为观测单位,很显然地区人数越多,所得到的率就越稳定,变异程度越小,而地区人数越少,所得到的率的变异就越大。在这种情况下,因变量的变异程度会随着自身数值或其他变量的变化而变化,残差不满足方差齐性的条件。此时如果继续采用OLS方法进行模型估计,则拟合结果就会受到变异程度较大的数据的影响,在这种情况下构建的回归模型就会发生偏差,预测精度降低,甚至预测功能失效。
为了解决这一问题,我们可以采用加权最小二乘法(Weighted Least Squares,WLS)的方法来进行模型估计,即在模型拟合时,根据数据变异程度的大小赋予不同的权重,对于变异程度较小、测量更精确的数据赋予较大的权重,对于变异程度较大、测量不稳定的数据赋予较小的权重,从而使得加权后回归直线的残差平方和最小,保证拟合的模型具有更好的预测价值。
三、SPSS操作
1. 研究问题
某研究人员拟研究PM2.5浓度与癌症发病率之间的关联性,以地区为观测单位,收集了40个地区的癌症发病率(/10万),PM2.5年平均浓度(μg/m3),人口数量(万),地区来源(0=农村,1=城市)等信息。(注:数据为模拟数据,不代表真实情况)
2. 判断残差是否满足方差齐性
参考多重线性回归的SPSS操作步骤,结果显示采用普通最小二乘法方法拟合的线性回归模型具有统计学意义(P<0.001),决定系数R Square为0.798,PM2.5平均浓度、不同地区来源(District)和不同人口数量对癌症发病率的影响有统计学显著性(P<0.05)。
残差散点图显示,标准化残差的变异程度会随着标准化预测值的增大而增大,呈现扩散趋势,表明残差不满足方差齐性的假设。
3. 权重估计
根据专业知识和经验判断,人口数量(Population)可能为导致残差不满足方差齐性的一个重要因素,下面对人口数量进行权重估计。
(1)选择Analyze → Regression → Weight Estimation,在Weight Estimation对话框中,将Cancer选入Dependent,将District和PM2.5选入Independent(s)中。
(2)将拟加权的变量Population选入Weight Variable中,系统将按照1/(权重变量)的power次幂对每条记录进行加权。
(3)Power range用于定义权重变量的指数,默认为-2~2,步长为0.5,即将拟合指数分为-2、-1.5、-1、-0.5、0、0.5、1、1.5和2一共构建9个方程中,并从中选取效果最佳的一个拟合指数。本例中标准化残差随着标准化预测值的增大而增大,因此Power range为正值,此处设定Power range的范围为0~5,步长为0.5。
(4)点击Option,选择Save best weight as new variable,生成一个新的变量用以保存效果最佳的权重。最后点击Continue回到Weight Estimation主对话框,点击OK完成操作。
(5)结果汇总
Log-Likelihood Values表中输出了在给定步长下每个指数值对应的对数似然值,选取对数似然值最大的一项为最优指数,因此本例中最终确定的最优指数值为3,即权重按照1/population3的函数关系来计算权重。同时系统会在确定最优指数的情况下,自动生成一个名为WGT_1的变量用于保存权重系数。
4. 最小二乘法操作
(1)选择Analyze → Regression → Linear,在Linear Regression对话框中,将Cancer选入Dependent,将District、PM2.5、Population选入Independent(s)中,将新生成的变量Weight for Cancer from WLS(WGT_1)选入WLS Weight中。
(2)点击Save选项,在Predicted Values和Residuals框下均选择Unstandardized。最后点击Continue回到Linear Regression主对话框,点击OK完成操作。
(3)绘制残差散点图
由于在SPSS中使用WLS模型无法直接绘制加权残差散点图,SPSS会给出相应的警示(如下图所示),因此我们需要按照SPSS提示中提供的计算公式,对加权预测值和加权残差值进行一定的转换,然后再绘制转换后的加权残差散点图。
选择Transform → Compute Variable,利用前几步操作生成的权重值(WGT_1)、加权预测值(PRE_1)和加权残差值(RES_1)来计算生成两个新变量,即转换的加权预测值wgtpred = PRE_1 * sqrt(WGT_1)和转换的加权残差值wgtresid = RES_1 * sqrt(WGT_1)。
然后选择Graphs → Legacy Dialogs → Scatter/Dot → Simple Scatter,将wtgpred选入X Axis,将wtgresid选入Y Axis,点击OK绘制散点图。
5. 结果汇总
(1)结果显示,采用加权最小二乘法拟合的线性回归模型仍具有统计学意义(P<0.001),决定系数R Square为0.779。由于决定系数计算方法本身的问题,在加权线性回归里会出现一定的偏差,导致加权方法计算得到的R2往往要小于普通最小二乘法的R2,但这并不代表加权的模型比普通模型的拟合效果差,两者不能简单相比。
(2)模型结果显示,PM2.5平均浓度、不同地区来源(District)和不同人口数对癌症发病率的影响有统计学显著性(P<0.05),且偏回归系数较普通最小二乘法更为稳健。
(3)转换后的加权残差散点图显示,残差的散点围绕ei=0这条直线的上下两侧均匀分布,不随预测值的变化而变化,说明经过加权校正后,残差已满足方差齐性的条件,达到了加权校正的目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18