京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据应靶向具体教育问题
近年来,教育领域中已涌现出了诸多典型的大数据应用,如教学信息化领域的学习分析、行为档案、能力评估,教育管理信息化领域的个性化服务、教学科研支撑、决策支持等,教育大数据的发展正显示出一派生机勃勃的景象。
教育大数据典型应用
从发展的角度来看,高校的实践是教育领域推进大数据应用的一块试金石,对其他教育阶段具有着重要的参考价值。当前,高校的大数据应用案例主要集中于以下三方面。
首先,是面向学生管理的教育大数据应用。此类应用往往又称为智慧网格、网格化管理应用,它主要聚焦于高校学生管理中的方方面面,对学生培养全生命周期中的生活、学业、思想等行为轨迹和发展过程进行伴随式辅导,形成协同可持续的智慧管理与导引发展新模式。目前,一些高校已经建立起了学生画像、学生行为预警、学生家庭经济状况分析、学生综合数据检索、学生群体分析等功能应用,由面向混杂群体变为面向特征群体管理,更好分辨学生在专业学习或就业方向上的潜能,为学生提供个性化的管理与培养方案。
其次,是面向校园服务的教育大数据应用。此类应用主要通过实时爬取、分析校园各类数据,监测校园舆情,优化校园资源配置,为校方提供建设管理决策,展示学校人文关怀。一些高校已经开展了相关功能试点,其中,综合校情展示功能通过集成基础数据分析及行为数据分析,能够使管理者对学校在校生情况、课程情况、科研成果、奖助情况、教工情况等方面进行直观了解和对比,帮助学生从严谨的数据分析中更加了解自己以及与他人的差异,感受信息化带来的人文关怀与改变。
再其次,是面向教学科研的教育大数据应用。部分高校开始尝试根据每年各专业招生计划、今年开课计划、往年教学安排等多种条件,基于教学资源开展数据分析,对教学活动中各项资源给出预测及预警。也有高校正在探讨通过导入和聚合各类的科研原始数据,建立多维度的高校科研指标数据分析服务,并精准地找到与学校需求更加契合的外部人才。
教育大数据的发展思考
从上述发展状况和典型应用中,不难看出当下教育大数据的理想与实然状态之间存在着一定反差,要更好地发挥教育大数据促进教育发展的作用,一方面需要进一步强调教育信息化基础设施的支撑作用,另一方面需要重新审视和反思教育领域对大数据的本质需求。
教育大数据的基础设施支撑
如果说教育大数据是教育这个“园区”中的高楼大厦的话,那么信息化基础设施就是“水电煤”三通一平,没有完善的基础设施构架,教育大数据将来就可能是“孤楼林立”的信息孤岛。
教育信息化的基础设施框架包括了跨域身份认证、授权、时间、接口、安全等基础性服务,以及应用系统数据、机器生成数据、用户行为数据、互联网数据等软性资产,它靶向到教育领域中各种各样的业务系统,确保每一个系统的稳健运行和发展,并促进这些系统底层的互联互通。基础设施建设有助于从根本解决教育大数据应用中面临的关键性问题,这些都有助于很好清理大数据建设中常见的“绊脚石”。
教育大数据的本质需求
教育大数据不是理论层面的花架子,要为教育领域带来革命性的变化,它必须具体靶向到当下教育领域内的具体教育问题。我们认为,从微观到宏观,教育大数据应主要解决四个层次的问题。
其一是如何更好促进学习者的个人发展。这是教育最核心、最本质的诉求,也是当下教育大数据应用最需攻克的“难关”。其途径是深入研究和聚焦学习者行为数据,包括学习者在学习过程中的学习行为、学习活动、学习进程和与之交互的学习环境等教育信息的数据,实现以学习者为中心背景下学习全过程的数据采集、编码、存储、分析和反馈,从而深入到行为机理层面对学习者产生重要影响。
其二是如何更好发掘教育教学规律,提升教育教学质量。学习者行为数据仅仅关注了“学”的部分,而学校教育则同时包括了教与学的活动,以及与这些活动相关的其它内容,这一层次的数据可被称为教育行为数据。借助相关的教育行为数据应用,可以采集、记录、分析教与学及其相关教育行为,更好地勾勒出教育教学的真实形态,有效推进教学信息化,深度促进教与学方式的变革。
其三是如何更好提升教育管理服务和教育治理水平。这是在教育行为数据的基础之上,进一步纳入各类教育管理和教育服务数据,利用数据来提升教育教学质量与教育管理服务水平,从而更好地推进教育治理体系和教育治理能力的现代化。
其四是如何更好制定教育决策,推动教育改革与发展,服务支撑国家发展战略。这是教育大数据应用中最为宏观的范畴,它面向所有与教育相关的数据。
针对不同的教育问题,不同层面的教育大数据应用的目标、主体、数据类型均不相同。在更细的粒度上,各层面的教育大数据应用还需要根据实际情况的不同作出更加灵活和有针对性的调整。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14