
1 数据导入
数据常用格式.csv/.txt/.xls/.json/.xml。
R语言提供相应的函数和库实现对这些数据格式的导入。
现已导入.csv格式和以tab分隔的.txt格式为例
# 读.csv格式
data1<-read.csv(file='C:/abc.csv',header=TRUE,sep=',')
# 读以tab分隔的.txt格式
data2<-read.csv(file='C:/abc.txt',header=TRUE,sep='\t')
2 数据类型变换
数据类型变换包括数据类型测试和数据类型之间的变换。
数据类型测试采用is.xyz系列函数,该函数测试是否为某一种数据类型,返回值是逻辑类型,即TRUE和FALSE。
数据类型变换采用as.xyz系列函数,把某一种数据类型变换到另一种数据类型。
例如:
is.numeric(),is.character(),is.vector(),is.matrix(),is.data.frame()
as.numeric(),as.character(),as.vector(),as.matrix(),as.data.frame()
3 数据集变换
library(reshape)
data3<-melt(mydata,id=c("id","time"))4 数据排序
利用order函数对单一变量或者多个变量进行排序(升序或者降序),返回具有排序功能的索引位置。
# sort by var1
data4<-old[order(var1),]
# sort by var1 and var2 (descending)
data5<-old[order(var1,-var2),]
5 数据可视化
利用R语言做数据可视简单和高效。
R语言画直方图
set.seed(1234)
score<-rnorm(n=1000,m=80,sd=20)
hist(score)
在直方图上面添加密度曲线
hist(score,
freq=FALSE,
xlab="Score",
main="Distribution of score",
col="lightgreen",
xlim=c(0,150),
ylim=c(0,0.02))
curve(dnorm(x,
mean=mean(score),
sd=sd(score)),
add=TRUE,
col="darkblue",
lwd=2)
6 列联表
列联表是理解各类分布的最基本和最有效的方式。
单变量列联表
多变量列联表
参考代码
library(gmodels)
CrossTable(mydata$myrowvar,mydata$mycolvar)
7 数据抽样
利用sample函数实现数据抽样
从数据集中不放回地随机抽取100个样本
参考代码:
mysample<-mydata[sample(1:nrow(mydata),100,replace=FALSE),]
8 数据去重
利用unique函数去掉向量中的重复值
set.seed(1234)
x<-round(rnorm(20,10,5))
x
unique(x)
结果如下
9 数据汇总
使用apply系列函数,实现汇总
10 缺失值识别和处理
使用is.na函数识别缺失值,采用均值、中位数、众数、插补法等方法对确实值处理。
y<-c(4,5,6,NA)
is.na(y)
y[is.na(y)]<-mean(y,na.rm=TRUE)
y
11 异常值识别和处理
异常值识别-异常值定位-异常值处理
异常值识别方法:盒箱图和简单统计量
异常值处理方法:剔除法/修复法
12 数据合并
利用merge函数或者rbind函数或者sqldf包基于数据库的连接操作
# merge two data frames by ID
total<-merge(data frameA,data frameB,by="ID"
# merge two data frames by ID and Country
total<-merge(data frameA,data frameB,by=c("ID","Country"))
total<-rbind(data frameA,data frameB)
总结
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10