京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈风险指标及常用分析方法
风险指标及常用分析方法
一 风险产生的原因
最直接的原因都是因为借款人不还钱导致的。所以才会采用各种方法,国内5c,国内的周易识人术。。。吧啦吧啦等等吧。:)
二 风险管理的模块
三 风险分析—量化风险
对风险进行量化已经有比较成熟的体系,下面对常用到的指标进行说明
即期指标(coincidental),分母为当期金额,如当期应收账款。其概念为分析当期应收账款的质量结构。
递延指标(lagged),分母为之前的金额,如之前月份的应收账款。其概念为可以较为合理的反映数据状态。
四 风险分析—常用风险分析方法
进行任何分析前都要先进行问题界定。问题轮廓越清晰,分析方向越明确,越容易切中要害。下面列举常见的分类类型。
4.1 分析类型
在进行任何数据分析时,大多分析包含在如下四大类中:分布、变化、对比、预测。
4.1.1 分布
结构分析
累计分析
4.12 变化
趋势分析
账龄分析
vintage分析
4.1.3 对比(举例)
区域对比
同行竞争对手对比
4.1.4预测
见第五章
4.2 指标的选择
每一件事情的发生都有其前因后果,分析事情切忌从单方面切入。否则就是瞎子摸象,容易使决策发生错误。选择指标时关注如下重点,以厘清不同指标之间的关联,为报表使用者提供完整可靠的分析。
相对性
即事件的一体两面,若仅以一个指标骤下判断是非常危险的,例如核准率的上升相对地有可能会带动延滞率的提高。这两个指标代表业务的增长和风险的增长,两个对应指标应同时并列于报表中以供使用者权衡利弊。
比较性
实际值和预设值的比较。
互补性
某些指标若单独呈现,解释力过于薄弱,必须采用互补性质的指标进行补强。这种互补性常见于比率和绝对数字之间。
多面性
有时候单一指标所呈现的讯息,再以另一方面切入会产生完全不同的解释。例如某一产品核准率持续上升,在审核流程无重大变动情况下,表明进件质量良好。但若观察金额核准率指标后可能出现相反的走势,客户申请金额和核准金额存在明显差异,也就是说进件质量实际上并不如件数核准率所显示的那么乐观。
顺序性
有些指标有前后关系,若要清楚掌握整个事件的始末,就必须对这些指标做一系列的观察。比如进件量、核准量和放款量,这三个指标依序发生,彼此环环相扣,任一环节出现异常皆会影响最终结果。
层次性
类似OLAP分析中的下钻。
备注:联机分析处理(OLAP) 钻取表示可以改变维的层次,变换分析的粒度。
落差性
时间上的落差,一个指标数据出现后,另一个指标需要经过一段时间才会有所体现。因此需要同时列出观察期及反应期的数据,以便报表使用者解读。如核准后逾期的出现一般需要三到六个月的发酵时间。
4.3 常用分析维度
产品维度
种类、利率、额度……
客户维度
年龄、性别、学历、收入、行业、家庭成员……
信用维度
公司内部评分卡、外部数据评分、征信信息、贷还款记录……
行为维度
行为维度包括还款记录、还款形式(全额还清、本期循环等)等
通用数据维度
区域、城乡区别、账龄……
五 风险分析—常用风险预测方法
预测分析法分为定性法及定量法,前者较偏向主观经验判断,后者则侧重客观的计量方式。两者经常搭配使用。
5.1 关联推测法
待补充。。。
5.2 移动平均法
待补充。。。
5.3 指数平滑法
通过Excel就可以得到指数趋势的方程和图形。
5.4 线性回归法
通过Excel就可以得到线性回归的方程和图形。
5.5 对数趋势法
通过Excel就可以得到对数趋势的方程和图形。
5.6 多项式
后语:
风控指标的东西比较多,在实际的工作应用中和用法及数据分析上会采用不同的思路,最主要目的还是为了风控政策提供决策依据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22