京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据驱动下的消费金融
对于消费金融而言,数据和技术在一定程度上正在改变着风控和获客效率。当“大数据”开始进入各行各业的视线,互联网消费金融公司也开始利用手中的大数据谋求更广阔的业务布局。
年轻群体因收入与消费的矛盾产生信贷需求,传统金融机构的部分缺席为互联网金融创造了发展空间。移动端可以随时随地对消费者的消费需求产生回应,科技发展重塑风控,这些与未被满足的需求产生碰撞,于是2013年互联网消费金融应运而生。
如今,经过四年的发展,互联网消费金融呈现爆发式增长的趋势,互联网消费金融从2013年开始到2016年,其交易规模从60亿增长到了4367.1亿,年均复合增长率达到了317.5%。如此累积下来的大量数据将被如何运用呢?
数据驱动
对于消费金融而言,数据和技术在一定程度上正在改变着风控和获客效率。大数据风控,通过运用大数据构建模型的方法对借款人进行风险控制和风险提示,避开传统风控的劣势,发挥最大优势更精准地对业务进行支持和维护。
随着互联网技术不断发展,传统的风控手段已逐渐不能支撑机构的业务扩展;而依托于大数据的风控技术对多维度、大量数据的智能处理,批量标准化的执行流程,更能贴合信息发展时代风控业务的发展要求。“与原有借款主体进行经验式风控不同,通过采集大量借款人或借款企业的各项指标进行数据建模的大数据风控更为科学有效。”
数据驱动下的风险定价是消费金融企业的核心能力之一。过去三年中,京东金融做了大量的数据、研发和系统的投入,这些投入是固定成本,每一单金融服务的操作成本则是变动成本。“比如‘白条’业务,我们没有一笔是通过人工审核,都是机器决策,这样子每单的变动成本近乎为零,我们的后台系统1秒钟可以处理几十万笔交易,这在过去的金融服务模式中是不可想像的。”区力说。现在“白条”信用风险评估模型覆盖了两亿多个京东用户,而且每一个数据模型体系中都有上百个子模型,几万个变量。
京东金融目前已经构建了自身的核心壁垒,即数据驱动下的风险定价能力,具备了获取各种不同维度数据源能力,以及数据技术能力和数据模型产品能力。
与此同时,京东金融凭借在数据领域进行广泛的投资以快速占位。公开资料显示,京东金融已经投资了ZestFinance、聚合数据、数库、聚信力等多个数据公司,这其中包括数据银行、数据挖掘、机器学习等不同的类型公司。
目前,马上消费金融拥有的技术和大数据团队人员占据公司总人数的2/3,体现了鲜明的新型金融机构特征。通过采用多种机器学习方法,建立了面对不同业务场景和不同需求的几十个大数据模型,拥有超过10W个数据维度。
依据京东金融2017年确定的“坚持技术持续投入不动摇”战略,下一步京东金融将对于自身数据技术基础方面进行布局。
举例来说,根据京东集团的电商业务的一些用户购物数据,基于相应的模型产品,可以在消费金融业务上为消费者提供相匹配的“白条”额度,或者为其提供专业的针对性理财服务,甚至在众筹业务方面。
当下,互联网消费金融借力大数据大势所趋,业内人士翘首以盼的是,利用大数据将各条业务线的服务、产品、用户打通,为用户提供更加人性化、合理化、科学化服务。
至2016年底,我国金融机构人民币信贷收支表中住户部门的短期消费贷款余额达到5.3万亿元,再加上非金融机构消费金融平台的贷款,我国当前消费金融市场规模(不含房贷)估计接近6万亿元(含房贷规模在25万亿元左右)。如果按照20%的增速预测,我国消费信贷的规模到2020年可超过12万亿元。
“中国的按揭占绝对主导,25万亿元当中,大概有19万亿元是住房按揭,剩下的大概6万亿元金融机构的钱,加上目前新兴起的互联网消费金融的钱,中国差不多6万亿元左右的消费信贷当中,信用卡的规模大概是4万亿元左右,剩下的都是分期。”
目前,进军数据、技术支持解决方案是不少已经具有一定发展规模的消费金融平台的一条“开放合作”之路。
“这几年,京东金融在数据和技术输出方面做了一些尝试,包括和金融机构合作联名信用卡,帮助发卡银行提高批核率。现在,我们的现金贷款产品背后大部分都是对接的银行资金,帮助金融机构降低风险提高收益率。”今后,京东金融依然会沿着开放的路径,对外输出数据技术能力,帮助推动整个普惠金融生态的良性循环。
对于“专业金融+电商场景”这种尝试,米么金服创始人曾指出,分工化协作将成为未来趋势所在,越来越多的专业服务机构将会填充进入电商的整体行业链,降低系统成本,提升行业整体效率。而消费金融公司自身具备的数据分析能力,可以捕获用户多维度互联网信息,为商户描绘出用户潜在画像,实现精准营销。
事实上,普惠金融实践的背后归根结底是对风险的把控能力。相比于传统消费金融风控模式,互联网金融消费风控系统以大数据风控是为基础,融入“数据+风控模型+算法”的思想,真正有效地将风控系统量化衡量。在刘向丽看来,基于大数据风控,可将传统消费金融前端销售依靠大量的人工推荐、后台依赖人工作业的重人力模式,升级为依赖系统和数据自动决策的在线实时自动信贷工厂模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27