
一行R代码来实现繁琐的可视化
ggfortify 是一个简单易用的R软件包,它可以仅仅使用一行代码来对许多受欢迎的R软件包结果进行二维可视化,这让统计学家以及数据科学家省去了许多繁琐和重复的过程,不用对结果进行任何处理就能以ggplot的风格画出好看的图,大大地提高了工作的效率。
ggfortify 已经可以在 CRAN 上下载得到,但是由于最近很多的功能都还在快速增加,因此还是推荐大家从 Github 上下载和安装。
library(devtools) install_github('sinhrks/ggfortify') library(ggfortify)
接下来我将简单介绍一下怎么用ggplot2和ggfortify来很快地对PCA、聚类以及LFDA的结果进行可视化,然后将简单介绍用ggfortify来对时间序列进行快速可视化的方法。
PCA (主成分分析)
ggfortify使ggplot2知道怎么诠释PCA对象。加载好ggfortify包之后, 你可以对stats::prcomp和stats::princomp对象使用ggplot2::autoplot。
library(ggfortify) df <- iris[c(1, 2, 3, 4)] autoplot(prcomp(df))
你还可以选择数据中的一列来给画出的点按类别自动分颜色。输入help(autoplot.prcomp)可以了解到更多的其他选择。
autoplot(prcomp(df), data = iris, colour = 'Species')
比如说给定label = TRUE可以给每个点加上标识(以rownames为标准),也可以调整标识的大小。
autoplot(prcomp(df), data = iris, colour = 'Species', label = TRUE, label.size = 3)
给定shape = FALSE可以让所有的点消失,只留下标识,这样可以让图更清晰,辨识度更大。
autoplot(prcomp(df), data = iris, colour = 'Species', shape = FALSE, label.size = 3)
给定loadings = TRUE可以很快地画出特征向量。
autoplot(prcomp(df), data = iris, colour = 'Species', loadings = TRUE)
同样的,你也可以显示特征向量的标识以及调整他们的大小,更多选择请参考帮助文件。
autoplot(prcomp(df), data = iris, colour = 'Species', loadings = TRUE, loadings.colour = 'blue', loadings.label = TRUE, loadings.label.size = 3)
和PCA类似,ggfortify也支持stats::factanal对象。可调的选择也很广泛。以下给出了简单的例子:
注意当你使用factanal来计算分数的话,你必须给定scores的值。
d.factanal <- factanal(state.x77, factors = 3, scores = 'regression') autoplot(d.factanal, data = state.x77, colour = 'Income')
autoplot(d.factanal, label = TRUE, label.size = 3, loadings = TRUE, loadings.label = TRUE, loadings.label.size = 3)
K-均值聚类
autoplot(kmeans(USArrests, 3), data = USArrests)
autoplot(kmeans(USArrests, 3), data = USArrests, label = TRUE, label.size = 3)
其他聚类
ggfortify也支持cluster::clara,cluster::fanny,cluster::pam。
library(cluster) autoplot(clara(iris[-5], 3))
给定frame = TRUE,可以把stats::kmeans和cluster::*中的每个类圈出来。
autoplot(fanny(iris[-5], 3), frame = TRUE)
你也可以通过frame.type来选择圈的类型。更多选择请参照ggplot2::stat_ellipse里面的frame.type的type关键词。
autoplot(pam(iris[-5], 3), frame = TRUE, frame.type = 'norm')
更多关于聚类方面的可视化请参考 Github 上的 Vignette 或者 Rpubs 上的例子。
lfda(Fisher局部判别分析)
lfda包支持一系列的 Fisher 局部判别分析方法,包括半监督 lfda,非线性 lfda。你也可以使用ggfortify来对他们的结果进行可视化。
library(lfda) # Fisher局部判别分析 (LFDA) model <- lfda(iris[-5], iris[, 5], 4, metric="plain") autoplot(model, data = iris, frame = TRUE, frame.colour = 'Species')
# 非线性核Fisher局部判别分析 (KLFDA) model <- klfda(kmatrixGauss(iris[-5]), iris[, 5], 4, metric="plain") autoplot(model, data = iris, frame = TRUE, frame.colour = 'Species')
注意对iris数据来说,不同的类之间的关系很显然不是简单的线性,这种情况下非线性的klfda 影响可能太强大而影响了可视化的效果,在使用前请充分理解每个算法的意义以及效果。
# 半监督Fisher局部判别分析 (SELF) model <- self(iris[-5], iris[, 5], beta = 0.1, r = 3, metric="plain") autoplot(model, data = iris, frame = TRUE, frame.colour = 'Species')
时间序列的可视化
用ggfortify可以使时间序列的可视化变得极其简单。接下来我将给出一些简单的例子。
ts对象
library(ggfortify) autoplot(AirPassengers)
可以使用ts.colour和ts.linetype来改变线的颜色和形状。更多的选择请参考help(autoplot.ts)。
autoplot(AirPassengers, ts.colour = 'red', ts.linetype = 'dashed')
多变量时间序列
library(vars) data(Canada) autoplot(Canada)
使用facets = FALSE可以把所有变量画在一条轴上。
autoplot(Canada, facets = FALSE)
autoplot也可以理解其他的时间序列类别。可支持的R包有:
zoo::zooreg
xts::xts
tseries::irts
一些例子:
library(xts) autoplot(as.xts(AirPassengers), ts.colour = 'green')
library(timeSeries) autoplot(as.timeSeries(AirPassengers), ts.colour = ('dodgerblue3'))
你也可以通过ts.geom来改变几何形状,目前支持的有line,bar和point。
autoplot(AirPassengers, ts.geom = 'bar', fill = 'blue')
autoplot(AirPassengers, ts.geom = 'point', shape = 3)
forecast包
library(forecast) d.arima <- auto.arima(AirPassengers) d.forecast <- forecast(d.arima, level = c(95), h = 50) autoplot(d.forecast)
有很多设置可供调整:
autoplot(d.forecast, ts.colour = 'firebrick1', predict.colour = 'red', predict.linetype = 'dashed', conf.int = FALSE)
vars包
library(vars) data(Canada) d.vselect <- VARselect(Canada, lag.max = 5, type = 'const')$selection[1] d.var <- VAR(Canada, p = d.vselect, type = 'const') autoplot(predict(d.var, n.ahead = 50), ts.colour = 'dodgerblue4', predict.colour = 'blue', predict.linetype = 'dashed')
changepoint包
library(changepoint) autoplot(cpt.meanvar(AirPassengers))
autoplot(cpt.meanvar(AirPassengers), cpt.colour = 'blue', cpt.linetype = 'solid')
strucchange包
library(strucchange) autoplot(breakpoints(Nile ~ 1), ts.colour = 'blue', ts.linetype = 'dashed', cpt.colour = 'dodgerblue3', cpt.linetype = 'solid')
dlm包
library(dlm) form <- function(theta){ dlmModPoly(order = 1, dV = exp(theta[1]), dW = exp(theta[2])) } model <- form(dlmMLE(Nile, parm = c(1, 1), form)$par) filtered <- dlmFilter(Nile, model) autoplot(filtered)
autoplot(filtered, ts.linetype = 'dashed', fitted.colour = 'blue')
smoothed <- dlmSmooth(filtered) autoplot(smoothed)
p <- autoplot(filtered) autoplot(smoothed, ts.colour = 'blue', p = p)
KFAS包
library(KFAS) model <- SSModel( Nile ~ SSMtrend(degree=1, Q=matrix(NA)), H=matrix(NA) ) fit <- fitSSM(model=model, inits=c(log(var(Nile)),log(var(Nile))), method="BFGS") smoothed <- KFS(fit$model) autoplot(smoothed)
使用smoothing='none'可以画出过滤后的结果。
filtered <- KFS(fit$model, filtering="mean", smoothing='none') autoplot(filtered)
trend <- signal(smoothed, states="trend") p <- autoplot(filtered) autoplot(trend, ts.colour = 'blue', p = p)
stats包
可支持的stats包里的对象有:
stl,decomposed.ts
acf,pacf,ccf
spec.ar,spec.pgram
cpgramautoplot(stl(AirPassengers, s.window = 'periodic'), ts.colour = 'blue')
autoplot(acf(AirPassengers, plot = FALSE))
autoplot(acf(AirPassengers, plot = FALSE), conf.int.fill = '#0000FF', conf.int.value = 0.8, conf.int.type = 'ma')
autoplot(spec.ar(AirPassengers, plot = FALSE))
ggcpgram(arima.sim(list(ar = c(0.7, -0.5)), n = 50))
library(forecast) ggtsdiag(auto.arima(AirPassengers))
gglagplot(AirPassengers, lags = 4)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28