
一行R代码来实现繁琐的可视化
ggfortify 是一个简单易用的R软件包,它可以仅仅使用一行代码来对许多受欢迎的R软件包结果进行二维可视化,这让统计学家以及数据科学家省去了许多繁琐和重复的过程,不用对结果进行任何处理就能以ggplot的风格画出好看的图,大大地提高了工作的效率。
ggfortify 已经可以在 CRAN 上下载得到,但是由于最近很多的功能都还在快速增加,因此还是推荐大家从 Github 上下载和安装。
library(devtools) install_github('sinhrks/ggfortify') library(ggfortify)
接下来我将简单介绍一下怎么用ggplot2和ggfortify来很快地对PCA、聚类以及LFDA的结果进行可视化,然后将简单介绍用ggfortify来对时间序列进行快速可视化的方法。
PCA (主成分分析)
ggfortify使ggplot2知道怎么诠释PCA对象。加载好ggfortify包之后, 你可以对stats::prcomp和stats::princomp对象使用ggplot2::autoplot。
library(ggfortify) df <- iris[c(1, 2, 3, 4)] autoplot(prcomp(df))
你还可以选择数据中的一列来给画出的点按类别自动分颜色。输入help(autoplot.prcomp)可以了解到更多的其他选择。
autoplot(prcomp(df), data = iris, colour = 'Species')
比如说给定label = TRUE可以给每个点加上标识(以rownames为标准),也可以调整标识的大小。
autoplot(prcomp(df), data = iris, colour = 'Species', label = TRUE, label.size = 3)
给定shape = FALSE可以让所有的点消失,只留下标识,这样可以让图更清晰,辨识度更大。
autoplot(prcomp(df), data = iris, colour = 'Species', shape = FALSE, label.size = 3)
给定loadings = TRUE可以很快地画出特征向量。
autoplot(prcomp(df), data = iris, colour = 'Species', loadings = TRUE)
同样的,你也可以显示特征向量的标识以及调整他们的大小,更多选择请参考帮助文件。
autoplot(prcomp(df), data = iris, colour = 'Species', loadings = TRUE, loadings.colour = 'blue', loadings.label = TRUE, loadings.label.size = 3)
和PCA类似,ggfortify也支持stats::factanal对象。可调的选择也很广泛。以下给出了简单的例子:
注意当你使用factanal来计算分数的话,你必须给定scores的值。
d.factanal <- factanal(state.x77, factors = 3, scores = 'regression') autoplot(d.factanal, data = state.x77, colour = 'Income')
autoplot(d.factanal, label = TRUE, label.size = 3, loadings = TRUE, loadings.label = TRUE, loadings.label.size = 3)
K-均值聚类
autoplot(kmeans(USArrests, 3), data = USArrests)
autoplot(kmeans(USArrests, 3), data = USArrests, label = TRUE, label.size = 3)
其他聚类
ggfortify也支持cluster::clara,cluster::fanny,cluster::pam。
library(cluster) autoplot(clara(iris[-5], 3))
给定frame = TRUE,可以把stats::kmeans和cluster::*中的每个类圈出来。
autoplot(fanny(iris[-5], 3), frame = TRUE)
你也可以通过frame.type来选择圈的类型。更多选择请参照ggplot2::stat_ellipse里面的frame.type的type关键词。
autoplot(pam(iris[-5], 3), frame = TRUE, frame.type = 'norm')
更多关于聚类方面的可视化请参考 Github 上的 Vignette 或者 Rpubs 上的例子。
lfda(Fisher局部判别分析)
lfda包支持一系列的 Fisher 局部判别分析方法,包括半监督 lfda,非线性 lfda。你也可以使用ggfortify来对他们的结果进行可视化。
library(lfda) # Fisher局部判别分析 (LFDA) model <- lfda(iris[-5], iris[, 5], 4, metric="plain") autoplot(model, data = iris, frame = TRUE, frame.colour = 'Species')
# 非线性核Fisher局部判别分析 (KLFDA) model <- klfda(kmatrixGauss(iris[-5]), iris[, 5], 4, metric="plain") autoplot(model, data = iris, frame = TRUE, frame.colour = 'Species')
注意对iris数据来说,不同的类之间的关系很显然不是简单的线性,这种情况下非线性的klfda 影响可能太强大而影响了可视化的效果,在使用前请充分理解每个算法的意义以及效果。
# 半监督Fisher局部判别分析 (SELF) model <- self(iris[-5], iris[, 5], beta = 0.1, r = 3, metric="plain") autoplot(model, data = iris, frame = TRUE, frame.colour = 'Species')
时间序列的可视化
用ggfortify可以使时间序列的可视化变得极其简单。接下来我将给出一些简单的例子。
ts对象
library(ggfortify) autoplot(AirPassengers)
可以使用ts.colour和ts.linetype来改变线的颜色和形状。更多的选择请参考help(autoplot.ts)。
autoplot(AirPassengers, ts.colour = 'red', ts.linetype = 'dashed')
多变量时间序列
library(vars) data(Canada) autoplot(Canada)
使用facets = FALSE可以把所有变量画在一条轴上。
autoplot(Canada, facets = FALSE)
autoplot也可以理解其他的时间序列类别。可支持的R包有:
zoo::zooreg
xts::xts
tseries::irts
一些例子:
library(xts) autoplot(as.xts(AirPassengers), ts.colour = 'green')
library(timeSeries) autoplot(as.timeSeries(AirPassengers), ts.colour = ('dodgerblue3'))
你也可以通过ts.geom来改变几何形状,目前支持的有line,bar和point。
autoplot(AirPassengers, ts.geom = 'bar', fill = 'blue')
autoplot(AirPassengers, ts.geom = 'point', shape = 3)
forecast包
library(forecast) d.arima <- auto.arima(AirPassengers) d.forecast <- forecast(d.arima, level = c(95), h = 50) autoplot(d.forecast)
有很多设置可供调整:
autoplot(d.forecast, ts.colour = 'firebrick1', predict.colour = 'red', predict.linetype = 'dashed', conf.int = FALSE)
vars包
library(vars) data(Canada) d.vselect <- VARselect(Canada, lag.max = 5, type = 'const')$selection[1] d.var <- VAR(Canada, p = d.vselect, type = 'const') autoplot(predict(d.var, n.ahead = 50), ts.colour = 'dodgerblue4', predict.colour = 'blue', predict.linetype = 'dashed')
changepoint包
library(changepoint) autoplot(cpt.meanvar(AirPassengers))
autoplot(cpt.meanvar(AirPassengers), cpt.colour = 'blue', cpt.linetype = 'solid')
strucchange包
library(strucchange) autoplot(breakpoints(Nile ~ 1), ts.colour = 'blue', ts.linetype = 'dashed', cpt.colour = 'dodgerblue3', cpt.linetype = 'solid')
dlm包
library(dlm) form <- function(theta){ dlmModPoly(order = 1, dV = exp(theta[1]), dW = exp(theta[2])) } model <- form(dlmMLE(Nile, parm = c(1, 1), form)$par) filtered <- dlmFilter(Nile, model) autoplot(filtered)
autoplot(filtered, ts.linetype = 'dashed', fitted.colour = 'blue')
smoothed <- dlmSmooth(filtered) autoplot(smoothed)
p <- autoplot(filtered) autoplot(smoothed, ts.colour = 'blue', p = p)
KFAS包
library(KFAS) model <- SSModel( Nile ~ SSMtrend(degree=1, Q=matrix(NA)), H=matrix(NA) ) fit <- fitSSM(model=model, inits=c(log(var(Nile)),log(var(Nile))), method="BFGS") smoothed <- KFS(fit$model) autoplot(smoothed)
使用smoothing='none'可以画出过滤后的结果。
filtered <- KFS(fit$model, filtering="mean", smoothing='none') autoplot(filtered)
trend <- signal(smoothed, states="trend") p <- autoplot(filtered) autoplot(trend, ts.colour = 'blue', p = p)
stats包
可支持的stats包里的对象有:
stl,decomposed.ts
acf,pacf,ccf
spec.ar,spec.pgram
cpgramautoplot(stl(AirPassengers, s.window = 'periodic'), ts.colour = 'blue')
autoplot(acf(AirPassengers, plot = FALSE))
autoplot(acf(AirPassengers, plot = FALSE), conf.int.fill = '#0000FF', conf.int.value = 0.8, conf.int.type = 'ma')
autoplot(spec.ar(AirPassengers, plot = FALSE))
ggcpgram(arima.sim(list(ar = c(0.7, -0.5)), n = 50))
library(forecast) ggtsdiag(auto.arima(AirPassengers))
gglagplot(AirPassengers, lags = 4)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18