Python多线程与同步 (threading包)
Python主要通过标准库中的threading包来实现多线程。在当今网络时代,每个服务器都会接收到大量的请求。服务器可以利用多线程的方式来处理这些请求,以提高对网络端口的读写效率。Python是一种网络服务器的后台工作语言 (比如豆瓣网),所以多线程也就很自然被Python语言支持。
(关于多线程的原理和C实现方法,请参考我之前写的Linux多线程与同步,要了解race condition, mutex和condition variable的概念)
多线程售票以及同步
我们使用Python来实现Linux多线程与同步文中的售票程序。我们使用mutex (也就是Python中的Lock类对象) 来实现线程的同步:
# A program to simulate selling tickets in multi-thread way
# Written by Vamei
import threading
import time
import os
# This function could be any function to do other chores.
def doChore():
time.sleep(0.5)
# Function for each thread
def booth(tid):
global i
global lock
while True:
lock.acquire() # Lock; or wait if other thread is holding the lock
if i != 0:
i = i - 1 # Sell tickets
print(tid,':now left:',i) # Tickets left
doChore() # Other critical operations
else:
print("Thread_id",tid," No more tickets")
os._exit(0) # Exit the whole process immediately
lock.release() # Unblock
doChore() # Non-critical operations
# Start of the main function
i = 100 # Available ticket number
lock = threading.Lock() # Lock (i.e., mutex)
# Start 10 threads
for k in range(10):
new_thread = threading.Thread(target=booth,args=(k,)) # Set up thread; target: the callable (function) to be run, args: the argument for the callable
new_thread.start() # run the thread
我们使用了两个全局变量,一个是i,用以储存剩余票数;一个是lock对象,用于同步线程对i的修改。此外,在最后的for循环中,我们总共设置了10个线程。每个线程都执行booth()函数。线程在调用start()方法的时候正式启动 (实际上,计算机中最多会有11个线程,因为主程序本身也会占用一个线程)。Python使用threading.Thread对象来代表线程,用threading.Lock对象来代表一个互斥锁 (mutex)。
有两点需要注意:
我们在函数中使用global来声明变量为全局变量,从而让多线程共享i和lock (在C语言中,我们通过将变量放在所有函数外面来让它成为全局变量)。如果不这么声明,由于i和lock是不可变数据对象,它们将被当作一个局部变量(参看Python动态类型)。如果是可变数据对象的话,则不需要global声明。我们甚至可以将可变数据对象作为参数来传递给线程函数。这些线程将共享这些可变数据对象。
我们在booth中使用了两个doChore()函数。可以在未来改进程序,以便让线程除了进行i=i-1之外,做更多的操作,比如打印剩余票数,找钱,或者喝口水之类的。第一个doChore()依然在Lock内部,所以可以安全地使用共享资源 (critical operations, 比如打印剩余票数)。第二个doChore()时,Lock已经被释放,所以不能再去使用共享资源。这时候可以做一些不使用共享资源的操作 (non-critical operation, 比如找钱、喝水)。我故意让doChore()等待了0.5秒,以代表这些额外的操作可能花费的时间。你可以定义的函数来代替doChore()。
OOP创建线程
上面的Python程序非常类似于一个面向过程的C程序。我们下面介绍如何通过面向对象 (OOP, object-oriented programming,参看Python面向对象的基本概念和Python面向对象的进一步拓展) 的方法实现多线程,其核心是继承threading.Thread类。我们上面的for循环中已经利用了threading.Thread()的方法来创建一个Thread对象,并将函数booth()以及其参数传递给改对象,并调用start()方法来运行线程。OOP的话,通过修改Thread类的run()方法来定义线程所要执行的命令。
复制代码
# A program to simulate selling tickets in multi-thread way
# Written by Vamei
import threading
import time
import os
# This function could be any function to do other chores.
def doChore():
time.sleep(0.5)
# Function for each thread
class BoothThread(threading.Thread):
def __init__(self, tid, monitor):
self.tid = tid
self.monitor = monitor
threading.Thread.__init__(self)
def run(self):
while True:
monitor['lock'].acquire() # Lock; or wait if other thread is holding the lock
if monitor['tick'] != 0:
monitor['tick'] = monitor['tick'] - 1 # Sell tickets
print(self.tid,':now left:',monitor['tick']) # Tickets left
doChore() # Other critical operations
else:
print("Thread_id",self.tid," No more tickets")
os._exit(0) # Exit the whole process immediately
monitor['lock'].release() # Unblock
doChore() # Non-critical operations
# Start of the main function
monitor = {'tick':100, 'lock':threading.Lock()}
# Start 10 threads
for k in range(10):
new_thread = BoothThread(k, monitor)
new_thread.start()
复制代码
我们自己定义了一个类BoothThread, 这个类继承自thread.Threading类。然后我们把上面的booth()所进行的操作统统放入到BoothThread类的run()方法中。注意,我们没有使用全局变量声明global,而是使用了一个词典monitor存放全局变量,然后把词典作为参数传递给线程函数。由于词典是可变数据对象,所以当它被传递给函数的时候,函数所使用的依然是同一个对象,相当于被多个线程所共享。这也是多线程乃至于多进程编程的一个技巧 (应尽量避免上面的global声明的用法,因为它并不适用于windows平台)。
上面OOP编程方法与面向过程的编程方法相比,并没有带来太大实质性的差别。
其他
threading.Thread对象: 我们已经介绍了该对象的start()和run(), 此外:
join()方法,调用该方法的线程将等待直到改Thread对象完成,再恢复运行。这与进程间调用wait()函数相类似。
下面的对象用于处理多线程同步。对象一旦被建立,可以被多个线程共享,并根据情况阻塞某些进程。请与Linux多线程与同步中的同步工具参照阅读。
threading.Lock对象: mutex, 有acquire()和release()方法。
threading.Condition对象: condition variable,建立该对象时,会包含一个Lock对象 (因为condition variable总是和mutex一起使用)。可以对Condition对象调用acquire()和release()方法,以控制潜在的Lock对象。此外:
wait()方法,相当于cond_wait()
notify_all(),相当与cond_broadcast()
nofify(),与notify_all()功能类似,但只唤醒一个等待的线程,而不是全部
threading.Semaphore对象: semaphore,也就是计数锁(semaphore传统意义上是一种进程间同步工具,见Linux进程间通信)。创建对象的时候,可以传递一个整数作为计数上限 (sema = threading.Semaphore(5))。它与Lock类似,也有Lock的两个方法。数据分析师培训
threading.Event对象: 与threading.Condition相类似,相当于没有潜在的Lock保护的condition variable。对象有True和False两个状态。可以多个线程使用wait()等待,直到某个线程调用该对象的set()方法,将对象设置为True。线程可以调用对象的clear()方法来重置对象为False状态。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03