京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS信用评分九步曲之第一步数据清洗
累积了一段时间的建模经验了,这次想把我在建模中用的代码分批分享出来,可能写的东西不是你能用到的,毕竟我们接触到的数据都不一样。但是譬如文本清洗之类的,看我之前的文章“正则式”还是可以找到解决方法的。我觉得数据面并不多,就是就我现有的数据做的数据处理。希望大神也可以指正我在建模中用的不恰当的处理数据的方式。那么就开始今天的分享啦。
今天主要想分享给大家的有三个代码:“缺失值填充”,“变量缺失值比例”“异常值检测”。
1、缺失值填充
缺失值补充这部分的代码是我在遇到譬如主表的数据是有的,但是left join的时候没有这个数据,但是他并不是缺失,只是客户真的没有。譬如房屋贷款笔数,假设客户没有房屋贷款,那么这个变量就是缺失的,但是他并不是缺失,他实际上没有,所以要填补一个零。这段代码是对数值的字符的整张数据集的变量的处理。
%macro missing(data);
data aa;
set &data;
array arr1{*} _NUMERIC_ ;
array arr2{*} _CHARACTER_ ;
do i = 1 to dim(arr1);
if missing(arr1(I)) then do;
arr1(i)=0;
/*这里的arr1(i)=0;根据自己的需要,要0就是0也可以是别的值*/
end;
if missing(arr1(i)) then do;
arr1(i)=0;
end;
end;
do i = 1 to dim(arr2);
if missing(arr2(I)) then do;
arr2(i)="0";
end;
end;
run;
%mend;
Data填入数据集
代码我都是调试好的,所以可以直接用。
2、变量缺失值比例
经过缺失值填补之后,但是还有些改缺失还是缺失的,这时候要对变量做变量缺失率的检查,我这边是对于变量缺失率达到70%的就去掉这个变量。具体缺失比率在多少就不要,还是要看自己的业务需求。那上代码吧。这部分的代码是参考另外这个公众号的妹纸写的代码公众号是:数据分析sas和r和python。
data tmp11;
set raw.jxl_total_t;
array arr1{*} _NUMERIC_ ;
array arr2{*} _CHARACTER_ ;
length variable $50;
do i = 1 to dim(arr1);
if missing(arr1(i)) then do;
variable =vname(arr1(i));/*数值型缺失*/
output;
end;
end;
do j = 1to dim(arr2);
if missing(arr2(j)) then do;
variable = vname(arr2(j)); /*字符型缺失*/
output;
end;
end;
keep variable;
run;
proc sql noprint;
select count(*) into : N from raw.jxl_total_t;
create table miss as
select variable label = "缺失变量名",
count(*) as frequency label = "缺失频数",
input(compress(put(calculated frequency / &N.,percent10.2),'%'),best32.) as percent label = %nrstr("%缺失占比")
from tmp11
group by variable
having percent>70;
quit;
/*统计缺失频数和占比*/
3、异常值检测
剔掉缺失严重的变量,那么下一步就是做异常值的检查,不要让异常值坏了拟合结果,毕竟数据也是存在一颗老鼠屎坏了一锅粥。异常值我之前在前面的文章中有用到聚类,有3倍标准差,聚类的话可能对于字符变量可能好些,3倍标准差的话需要要求数据呈正态分布,但是我的数据貌似很难达到这个需求。如果需要以上提及的聚类或者是3倍标准差可以点:路径查看啦。那么一下这段代码我用的箱形图来找出异常值,并且将在区域以外的数据集用上下界的值代替。分享的代码没有固定的iqr,写的条件譬如,异常值都在1.5倍iqr达到1%,那么就将这部分的值判断为异常值,假设现在是3iqr外的异常值达到1%或者小于1%,但是2.5iqr以外的数据已经达到了1.5%,那么就行选定3iqr以外的数据为异常值。异常值检查只针对数值变量。我是不是废话很多,我很怕你们理解不了我的意思,如果不知道iqr是什么的,先百度下拉。接下来上代码。
%macro pub(data,var);
PROC UNIVARIATE DATA= &data.(where=(&var.^=.)) NOprint;
VAR &var.;
OUTPUT OUT=qdata Q1=q1 Q3=q3 QRANGE=iqr STD=VSTD Mean=VMean;
RUN;
DATA _null_;
SET qdata;
call symput('STD', VSTD);
call symput('Mean', VMean);
CALL SYMPUT("q1",q1);
CALL SYMPUT("q3",q3);
CALL SYMPUT("iqr",compress(iqr));
RUN;
%let qa=%sysevalf(&q1. -(1.5*&iqr.));
%let qb=%sysevalf(&q3. +(1.5*&iqr.));
%let qc=%sysevalf(&q1. -(2*&iqr.));
%let q4=%sysevalf(&q3. +(2*&iqr.));
%let q5=%sysevalf(&q1. -(2.5*&iqr.));
%let q6=%sysevalf(&q3. +(2.5*&iqr.));
%let q7=%sysevalf(&q1. -(3*&iqr.));
%let q8=%sysevalf(&q3. +(3*&iqr.));
%put &q1.&q8.;
DATA outliers;
SET &data.(where=(&var.^=.));
LENGTH severity $2;
severity="";
IF &var. <= &qa. OR &var. >= &qb. THEN severity="1";
else IF &var. <= &qc. OR &var. >= &q4. THEN severity="2";
else IF &var. <= &q5. OR &var. >= &q6. THEN severity="3";
else IF &var. <= &q7. OR &var. >= &q8. THEN severity="4";
IF severity in ("1","2","3","4") THEN OUTPUT outliers;
RUN;
proc sql;
%do f=1 %to 4;
select count(*) into:outliers_&f. from outliers where severity="&f.";
%end;
select count(*) into :n from &data.;
quit;
%put &outliers_1. &outliers_2.;
%put &n.;
%let out_1=%sysevalf(&outliers_1./&n.);
%let out_2=%sysevalf(&outliers_2./&n.);
%let out_3=%sysevalf(&outliers_3./&n.);
%let out_4=%sysevalf(&outliers_4./&n.);
data &data.;
set &data.;
length &var._1 8.;
if &out_1.<0.01 and &var.^=. then do;
if &var. <=&qa. then &var._1=0;
else if &var. >=&qb. then &var._1=&qb.;
else &var._1=&var.;
end;
if &out_2.<0.01 and &var.^=. then do;
if &var. <=&qc. then &var._1=0;
else if &var. >=&q4. then &var._1=&q4.;
else &var._1=&var.;
end;
if &out_3.<0.01 and &var.^=. then do;
if &var. <=&q5. then &var._1=0;
else if &var. >=&q6. then &var._1=&q6.;
else &var._1=&var.;
end;
if &out_4.<0.01 and &var.^=. then do;
if &var. <=&q7. then &var._1=0;
else if &var. >=&q8. then &var._1=&q8.;
else &var._1=&var.;
end;
else do ;
&var._1=. ;
end;
drop &var. ;
rename &var._1=&var. ;
run;
%mend;
pub(data,var) data填入数据集,var填入你要检测的变量。
代码中有很多可以优化地方,譬如那些重复的东西就可以用循环的,你问我为什么不用,是因为我懒得改了,如果你想自己优化一下,就自己优化一下吧。如果我后续优化了,再分享给你们也可以。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22