
【新手必备】SAS常用函数整理
本文根据网络资源对SAS的常用函数进行了整理。主要内容包括:
1. 数学函数
2. 数组函数
3. 字符函数
4. 日期和时间函数
5. 分布密度函数,分布函数
6. 分位数函数
7. 随机数函数
8. 样本统计函数
一、数学函数
1.1 ABS(x) 求x的绝对值。
1.2 MAX(x1,x2,…,xn) 求所有自变量中的最大值。
1.3 MIN(x1,x2,…,xn) 求所有自变量中的最小值。
1.4 MOD(x,y) 求x除以y的余数。
1.5 SQRT(x) 求x的平方根。
1.6 ROUND(x,eps) 求x按照eps指定的精度四舍五入后的结果
例:ROUND(5654.5654,0.01) =5654.57
ROUND(5654.5654,10)=5650
1.7 CEIL(x) 求大于等于x的最小整数。
1.8 FLOOR(x) 求小于等于x的最大整数。
1.9 INT(x) 取整数部分(x扔掉小数部分后的结果)。
1.10 FUZZ(x) 当x与其四舍五入整数值相差小于1E-12时取四舍五入。
1.11 LOG(x) 求x的自然对数。
1.12 LOG10(x) 求x的常用对数。
1.13 EXP(x) 指数函数 。
1.14SIN(x), COS(x), TAN(x) 求x的正弦、余弦、正切函数。
1.15 ARSIN(y) 计算函数y=sin(x)在区间的反函数,y取[-1,1]间值。
1.16 ARCOS(y) 计算函数y=cos(x)在的反函数,y取[-1,1]间值。
1.17 ATAN(y) 计算函数y=tan(x)在 的反函数,y取间值。
1.18 SINH(x), COSH(x), TANH(x) 双曲正弦、余弦、正切 。
1.19 ERF(x) 误差函数。
1.20 GAMMA(x) 伽玛函数 。
1.21 SIGN(x)符号函数。
二、数组函数
2.1 DIM(x) 求数组x第一维的元素的个数。
2.2 DIM k(x) 求数组x第k维的元素的个数。
2.3 LBOUND(x) 求数组x第一维的下界。
2.4 HBOUND(x) 求数组x第一维的上界。
2.5 LBOUND k(x) 求数组x第 k维的下界。
2.6 HBOUND k(x) 求数组x第 k维的上界。
三、字符函数
3.1 TRIM(s) 返回去掉字符串s的尾随空格的结果。
3.2 UPCASE(s) 把字符串s中所有小写字母转换为大写字母后的结果。
3.3 LOWCASE(s) 把字符串s中所有大写字母转换为小写字母后的结果。
3.4 INDEX(s,s1) 查找s1在s中出现的位置。找不到时返回0。
3.5 RANK(s) 字符s的ASCII码值。
3.6 BYTE(n) 第n个ASCII码值的对应字符。
3.7 REPEAT(s,n) 字符表达式s重复n次。
3.8 SUBSTR(s,p,n) 从字符串s中的第p个字符开始抽取n个字符长的子串
3.9 TRANWRD(s,s1,s2) 从字符串s中把所有字符串s1替换成字符串s2后的结果。
四、日期和时间函数
4.1 MDY(m,d,yr) 生成yr年m月d日的SAS日期值
4.2 YEAR(date) 由SAS日期值date得到年
4.3 MONTH(date) 由SAS日期值date得到月
4.4 DAY(date) 由SAS日期值date得到日
4.5 WEEKDAY(date) 由SAS日期值date得到星期几
4.6 QTR(date) 由SAS日期值date得到季度值
4.7 HMS(h,m,s) 由小时h、分钟m、秒s生成SAS时间值
4.8 DHMS(d,h,m,s) 由SAS日期值d、小时h、分钟m、秒s生成SAS日期时间值
4.9 DATEPART(dt) 求SAS日期时间值dt的日期部分
4.10 INTNX(interval,from,n) 计算从from开始经过n个interval间隔后的SAS日期。
其中interval 可以取'YEAR'、'QTR'、'MONTH'、'WEEK'、'DAY'等。
例:INTNX('MONTH', '16Dec1997'd, 3)=1998年3月1日。
4.11 INTCK(interval,from,to) 计算从日期from到日期to中间经过的interval间隔的个数,其中interval取'MONTH'等。
例:INTCK('YEAR', '31Dec1996'd, '1Jan1998'd)=2
函数计算1996年12 月31日到1998年1月1日经过的年间隔的个数,结果得2,尽管这两个日期之间实际只隔1年。
五、分布密度函数、分布函数
作为一个统计计算语言,SAS提供了多种概率分布的有关函数。分布密度、概率、累积分布函数等可以通过几种统一的格式调用,格式为 :
分布函数值 = CDF(' 分布', x <, 参数表>);
密度值 = PDF(' 分布', x <, 参数表>);
概率值 = PMF(' 分布', x <, 参数表>);
对数密度值 = LOGPDF(' 分布', x <, 参数表>);
对数概率值 = LOGPMF(' 分布', x <, 参数表>);
CDF计算由'分布'指定的分布的分布函数, PDF计算分布密度函数值,PMF计算离散分布的分布概率,LOGPDF为PDF的自然对数,LOGPMF为PMF的自然对数。函数在自变量 x处计算,<, 参数表>表示可选的参数表。
分布类型取值可以为: BERNOULLI, BETA, BINOMIAL, CAUCHY, CHISQUARED, EXPONENTIAL, F, GAMMA, GEOMETRIC, HYPERGEOMETRIC, LAPLACE, LOGISTIC, LOGNORMAL, NEGBINOMIAL, NORMAL 或 GAUSSIAN, PARETO, POISSON, T, UNIFORM, WALD 或 IGAUSS, and WEIBULL。可以只写前四个字母。
例:PDF('NORMAL', 1.96)计算标准正态分布在1.96处的密度值(0.05844),CDF('NORMAL', 1.96)计算标准正态分布在1.96处的分布函数值(0.975)。PMF对连续型分布即PDF。
除了用上述统一的格式调用外,SAS还单独提供了常用的分布的密度、分布函数。
5.1 PROBNORM(x) 标准正态分布函数
5.2 PROBT(x,df<,nc>) 自由度为df的t分布函数。可选参数nc为非中心参数。
5.3 PROBCHI(x,df<,nc>) 自由度为df的卡方分布函数。可选参数nc为非中心参数。
5.4 PROBF(x,ndf,ddf<,nc>) F(ndf,ddf)分布的分布函数。可选参数nc为非中心参数。
5.5 PROBBNML(p,n,m) 设随机变量Y服从二项分布B(n,p),此函数计算P(Y m)。
5.6 POISSON((lambda,n) 参数为lambda的Poisson分布Y n的概率。
5.7 PROBNEGB(p,n,m) 参数为(n,p)的负二项分布Y m的概率。
5.8 PROBHYPR(N,K,n,x<,r>) 超几何分布的分布函数。
5.9 PROBBETA(x,a,b) 参数为(a,b)的Beta分布的分布函数。
5.10 PROBGAM(x,a) 参数为a的Gamma分布的分布函数。
5.11 PROBMC 计算多组均值的多重比较检验的概率值和临界值。
5.12 PROBBNRM(x,y,r) 标准二元正态分布的分布函数,r为相关系数。
六、分位数函数
分位数函数是概率分布函数的反函数。其自变量在0到1之间取值。分位数函数计算的是分布的左侧分位数。SAS提供了六种常见连续型分布的分位数函数:
6.1 PROBIT(p) 标准正态分布左侧p分位数。结果在-5到5之间。
6.2 TINV(p, df <,nc>) 自由度为df的t分布的左侧p分位数。可选参数nc为非中心参数。
6.3 CINV(p,df<,nc>) 自由度为df的卡方分布的左侧p分位数。可选参数nc为非中心参数。
6.4 FINV(p,ndf,ddf<,nc>) F(ndf,ddf)分布的左侧p分位数。可选参数nc为非中心参数。
6.5 GAMINV(p,a) 参数为a的伽马分布的左侧p分位数。
6.6 BETAINV(p,a,b) 参数为(a,b)的贝塔分布的左侧p分位数。
七、随机数函数
7.1 均匀分布随机数
有两个均匀分布随机数函数:UNIFORM(seed),seed必须是常数,为0,或5位、6位、7位的奇数。RANUNI(seed),seed为小于2**31-1的任意常数。在同一个数据步中对同一个随机数函数的多次调用将得到不同的结果,但不同数据步中从同一种子出发将得到相同的随机数序列。随机数种子如果取0或者负数则种子采用系统日期时间。
7.2 正态分布随机数
有两种:
(1) NORMAL(seed),seed为0,或5位、6位、7位的奇数。
(2) RANNOR(seed),seed为任意数值常数。
7.3 指数分布随机数
RANEXP(seed),seed为任意数值,产生参数为1的指数分布的随机数。
参数为lambda的指数分布可以用RANEXP(seed)/lambda得到。
7.4 伽马分布随机数
RANGAM(seed, alpha),seed为任意数值常数,alpha>0,得到参数为alpha的伽马分布。设X=RANGAM(seed, alpha),则Y=beta*X是形状参数为alpha,尺度参数为beta的GAMMA分布随机数。如果alpha是整数,则Y=2*X是自由度为 2*alpha的卡方分布随机数。
如果alpha是正整数,则Y=beta*X是Erlang分布随机数,为alpha个独立的均值为beta的指数分布变量的和。 如果Y1=RANGAM(seed,alpha),Y2=RANGAM(seed,beta),在Y=Y1/(Y1+Y2)是参数为(alpha,beta )的贝塔分布随机数。
7.5 三角分布随机数
RANTRI(seed,h),seed为任意数值常数,0<h<1。此分布在0到1取值,密度在0到h 之间为2x/h,在h到1之间为2(1-x)/(1-h)。
7.6 柯西分布随机数
RANCAU(seed),seed为任意数值常数。产生位置参数为0,尺度参数为1的标准柯西分布随机数。Y=alpha+beta*RANCAU(seed)为位置参数为alpha,尺度参数为beta的一般柯西分布随机数。
7.7 二项分布随机数
RANBIN(seed,n,p)产生参数为(n,p)的二项分布随机数,seed为任意数值。
7.8 泊松分布随机数
RANPOI(seed,lambda)产生参数为lambda>0的泊松分布随机数,seed为任意数值。
7.9 一般离散分布随机数
RANTBL(seed, p1, …, pn)生成取1,2,…,n的概率分别为p1,…,pn的离散分布随机数。
八、样本统计函数
样本统计函数把输入的自变量作为一组样本,计算样本统计量。其调用格式为“函数名(自变量1,自变量2,…,自变量n)”或者“函数名(OF 变量名列表)”。比如SUM是求和函数,如果要求x1,x2,x3的和,可以用SUM(x1,x2,x3),也可以用SUM(OF x1-x3)。这些样本统计函数只对自变量中的非缺失值进行计算,比如求平均时把缺失值不计入内。 数据分析师培训
8.1 MEAN 均值
8.2 MAX 最大值
8.3 MIN 最小值
8.4 N 非缺失数据的个数
8.5 NMISS 缺失数值的个数。
8.6 SUM 求和
8.7 VAR 方差
8.8 STD 标准差
8.9 STDERR 均值估计的标准误差,用STD/SQRT(N)计算。
8.10 CV 变异系数
8.11 RANGE 极差
8.12 CSS 离差平方和
8.13 USS 平方和
8.14 SKEWNESS 偏度
8.15 KURTOSIS 峰度
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24