京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据谁玩得溜?博鳌论坛上的大咖是这么说的
又是一年博鳌聚焦全球目光之时,众多商界学界大佬悉数登场,这一次他们把注意力投向了数据的价值这个属于移动互联网时代的课题。
今年初,工信部编制并正式印发了《大数据产业发展规划(2016-2020年)》,目标到2020年,大数据相关产品和服务业务收入突破1万亿元,年均复合增长率保持30%左右。数据是国家基础性战略资源,推动大数据应用,加快传统产业数字化、智能化,做大做强数字经济,将为我国经济转型发展提供新动力。
数据的价值和应用前景毋庸置疑。在博鳌分论坛上,现场众多企业领袖表示,在大数据的应用模式上,基于用户行为分析、行为理解、行为预测的客户深度洞察,将数据封装为服务,形成对外开放、可商业化的核心能力,将带来商业模式的巨大创新。
新变革:为消费金融打开“数控”大门
大数据的普及需要创新技术的推动,如何把海量数据赋予使用价值,落实到应用场景,充分发挥大数据分析的价值是论坛的焦点。
腾云天下CEO崔晓波认为,数据的价值是能够变成企业决策的艺术。他举了一个案例,2013年他在为某股份制银行的用户做行为分析时,发现这个银行的信用卡高端客户游戏属性很重,便和休闲游戏的公司合作进行联合营销,用积分兑换游戏虚拟币,后来发现用户转化率高得惊人。这样的尝试在“大数据时代”来临之前,是没有人会想到的。
“大数据”并不是竞争力,“大数据的有效应用”才是。尤其是在中国消费升级的大潮中,随着消费金融的井喷式增长,如何利用大数据人工智能技术对消费场景、业务渠道、客户群体和风控等进行综合标准的把控,显得尤为重要。
作为中国消费金融的领跑者,平安普惠一直在积极探索大数据在其普惠业务中的应用。平安普惠副总裁兼首席市场官徐汉华分享了企业的实践经验,平安普惠依托自身在消费金融及小微企业金融服务领域累积的丰富经验,借鉴国际消费信贷行业的领先技术,凭借平安集团及第三方平台的大数据智能运用,实现无纸化全线上审批流程,并且利用数据建模、心理测量、人脸识别、微表情、时空地图等反欺诈技术为客户量身绘制信用画像,让更多人更快、更好、更方便地获得金融服务。
最新公布的中国平安集团年报显示,2016年平安普惠的新增贷款量达1,729.19亿元,同比增长257.7%,期末管理贷款余额1,466.40亿元。自开展业务以来,累计借款人总数达到377万,累计贷款量达2,719.97亿元,其中无抵押贷款量1,753.64亿元,有抵押贷款量966.33亿元,信贷损失率控制在低位的单位数。
数据价值已经越来越受重视,特别是在金融企业业务转型时期,基于数据的业务及内部管理优化使得金融领域的大数据应用市场规模在未来几年将以高于整体水平的速度增长。
新价值:破局智能风控,是企业的命门,也是社会责任
我国市场规模大,消费需求旺盛,未来越来越多的数据将被记录和整理,用户的行为信息日益丰富和完善,预测分析必定会成为大数据时代的关键技术。
“数据帮助我们更快地发现现象背后的洞察,可以让我们做更多有价值的事情。”微软全球资深副总裁、微软亚太研发集团主席、微软亚洲研究院院长洪小文说。
在我国,互联网金融行业整体环境和风险水平逐渐趋好,但行业风险仍需防范。而准确的预测分析恰恰能帮助金融机构降低因欺诈、信用违约风险导致的坏账风险,达到有效的“大数据风控”。
利用大数据人工智能技术,用海量冗杂的基础数据建立底层模型,从用户个人的消费和信贷行为中衍生出复杂的变量,最终塑造出高度精细化的风险控制模型,用以评估授信额度和还款能力,合理放贷,规避金融风险,从而促进行业良性发展。由此,数据的新价值被释放。
徐汉华坦言,在海量数据里甄别有效的信息,洞察数据背后的逻辑,采取相应风控手段是对客户和企业负责的一种体现。对于客户,匹配还款能力的授信额度才能避免征信受损,真正给客户带来金融的便利。而对于企业,风控是这个行业赖以生存的根本,只有把控好信贷损失率,才能保证企业持续发展,构建更好的信用环境。
大数据协防金融风险,推动行业的可持续发展,帮助用户理性地选择贷款产品,培养健康的消费金融意识,或为我国金融系统乃至全社会信用体系的建设,提供有益参考。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22