
大数据行业发展现状及趋势预测
大数据媒体KDnuggets就大数据领域的发展现状与趋势采访了8位业内专家,以下是他们的观点。
大数领域专家、科技创业导师,作者
由于亚马逊AWS、Rackspace、Azure等云数据服务的兴起,2016年数据量出现了大规模增长,数据量增长的趋势将在2017年持续。2017年还将出现更多机器学习、认知计算、预测分析相关的项目。2017年依然会面临数据隐私问题,数据科学家、首席数据官、首席架构师等职位在2017年会越来越热门、定位也会越来越清晰。实时数据流和更加复杂的数据管道将重新定义大数据。
IBM数据科学布道师
Hadoop在大数据领域衰落的速度比我预想的更快,MapReduce、HBase,甚至HDFS对于数据科学家也没有以前那么重要了。
2017年最主要的趋势是更多的程序员学习选择数据科学技能,以发展自己的职业生涯。2017年最热门的数据科学项目会聚焦在流媒体分析、嵌入式深度学习、认知物联网(cognitive IoT)、认知聊天机器人、嵌入式机器认知、自动驾驶汽车、计算机视觉和语音识别等领域。同时,我们也会在明年看到新一代的神经网络芯片、GPU和其他的高性能认知计算框架。
Gartner副总裁,知名分析师
2016年大数据最大的一个变化是人们不再谈论大数据了,大数据的概念已经普及。关注的重点逐步转为商业导向,如何管理、评估“信息资产”,以及如何对“信息资产”进行变现。
2017年我们应该努力弄清楚数据权利和责任、所有权,尤其是涉及到物联网数据。目前数据资产在会计业、律师界和保险行业都十分棱模两可。但随着机构投资人和分析师越来越看重企业的信息化程度,这种情况会逐步改善。2017年大公司会越来越注重大数据人才,比如数据经理人和其他信息整合人才。
2016年大数据已经没有前几年那么火热,随着大数据基础设施、软件和理论的发展,大数据分析解决方案已经越来越成熟、普及,不再仅仅局限于少数先行者。随着大数据的成熟,自助服务和自动化得到越来越多的关注。虽然大数据分析解决方案越来越容易获取,但是我们仍然需要具备通信、信息处理技术的专业人员才能使用。随着人工智能、机器学习、VR、AR、物联网、容器技术的发展,大数据解决方案将进入新的阶段,越来越逼近摩尔定律的边界。
Datafloq创始人,《ThinkBigger》作者
对于大数据,2016年是令人激动的一年,大数据不再只是一个热门概念或者流行词语。因为大数据公司已经开发了实际的解决方案和应用。
在2017年这种趋势将会持续,随着技术越来越智能,我们会看到新的应用被开发出来。深度学习和人工智能将变得更加智能,并将更多地应用于组织机构,因为计算能力和数据量不再成为开发智能应用程序的障碍,2017年将是令人兴奋的一年,但随着大数据、智能应用的发展,数据安全问题也越来越严重。
大数据科学家、Adversitement主管
2016年,大数据经历从单一部门到跨部门的应用。物联网数据应用开始在一些关键领域出现,此外,随着云计算平台的发展,为越来越多的机器学习应用研发提供了支持。
2017,我们会看到人工智能的增长、物联网应用的爆发,以及机器学习的广泛应用。技术已经准备好了,而且用户对大数据技术改善体验的需求非常强。根据预测,2020年连网设备数将达到100亿到340亿之间。
斯坦福大学教授、计算学科学家
欧盟已经根据数据的使用和分析模型出台了一个新的隐私保护法。将在2018年1月开始生效。这一法案将会造成怎样的影响现在还不可知,但数据公司一直十分纠结到底哪些数据和分析方法是允许被使用的,比如Google可以分析用户邮件内容,以判定是否为垃圾邮件,但Google到底有没有读取用户邮件内容的权力?
Databricks首席科学家、Apache Spark创始人
公有云正在成为部署大数据的主流方式。根据Apache Spark今年夏天的用户调查,在公有云部署Spark的用户比例达(61%)比使用Hadoop YARN的用户(36%)更高。此外,使用公有云的用户从2015年的51%增长到61%,使用HadoopYARN的用户从2015年的40%下跌到36%。其中的一个原因是亚马逊S3这类云存储产品价格越来越低,越来越稳定,也比Hadoop分布式文件系统更容易管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15