
医疗人工智能和大数据的泡沫正在袭来
人工智能和大数据是今年最热的话题,在国内投资界和产业界都如火如荼,特别是在AlphaGO横扫围棋界后更是呈现一片欣欣向荣的势态。大数据与人工智能目前在医学类的应用也是层出不穷,尤其是在图像识别、影像诊断上都显示了很好的前景。
但是在比较复杂的系统中,大数据挖掘和人工智能可能会受挫,大数据技术本身不是泡沫,但是利用大数据和人工智能名头的相关产业的泡沫正在袭来……
医药人工智能研究受挫,IBM沃森机器人遭遇冷板凳
沃森是IBM的杰出计算系统,自从参加了2011年的智力节目《危险边缘》,在一场与两名最受瞩目的选手对决中胜出后,就成功博得了世人的瞩目。在2013年10月的新闻发布会中,IBM宣称安德森癌症中心,德克萨斯大学系统之一,正在使用沃森机器人系统用于研究根治癌症。
但是近期,据福布斯的报道指出,IBM与该世界顶尖癌症研究机构的合作关系正趋于破裂。此前安德森癌症中心证实:此项目从去年开始就已经暂停。安德森癌症中心也正在积极寻求其他合作方的竞价,未来这些合作方有可能取代IBM。来自德克萨斯大学审计机构的一份报告指出,安德森癌症中心已经花费了6200万美金用于此项目,但尚未实现目标。审计记录显示项目重点更换了数次,第一次重点研究白血病、然后是另一个、接下来又是肺癌。最后毫无进展。
虽然安德森癌症中心与IBM的沃森机器人确立合作的出发点确实是积极的,但是最终项目却没有完成,而且还花费了巨额资金。与安德森癌症中心合作的结果并不令人满意。即使双方合作破裂是安德森方面的一个错误决策,这仍然从侧面说明了IBM的人工智能和大数据目前在医药领域尚未取得重大建树。
大数据医疗的应用方向有哪些?
目前大数据主要应用于以下五大方向的15个应用:
从以上应用范畴中我们发现,为什么在复杂疾病的数据挖掘中,大数据并没有深入发展呢?
因为复杂疾病是非标类的产品,无论是在学术界还是在临床治疗上都有非常大的争议,有时候是向正有时候是向反,对于一些疾病甚至很多的研究报告会出现截然相反的结果,而且学术争议是一直都存在的,因此复杂疾病是非常难以判断的。
医疗与下围棋大不相同,围棋的下法有一个最优概率的计算,但是在医学中,哪怕是51%的概率你也不能说就一定比49%更好,而且医学中小概率事件发生是很普遍的。
非结构化病历数据的挑战
目前我国各医院系统并不相连,因此没有一个统一规范的临床结构化病历模型标准,不同医院的病历书写也存在很大的差异化,非结构化的数据使得大数据在我国的医疗环境下很难做到高效率的数据挖掘。
还有一个很现实的问题那就是——中国的绝大部分临床病历实际价值非常的小。因为医生的临床工作很忙,所以基层医院的病历写作不规范,而上级三甲医院的病历基本上都靠复制黏贴,因此想要从病历的结构化和自然语言中是很难做到任何有效的分析的。
除此之外,目前中国普遍的临床用药和检查都有很多的问题,临床中的实际治疗是千变万化的,但是你在患者病历中是看不出来的,因为中国的医生很多都是以完成实际工作和不要扣钱为主,因此就会做一些套式的病历,以及靠复制黏贴来随意应付paperwork,患者的细微诊断细节很多时候从病历上根本无法体现,所以每个病历的治疗效果可能都千差万别。
大数据很多是从既有数据中进行挖掘,但是中国的患者离开医院后失访率非常高,这与美国的医疗情况不同,美国的患者离院之后的诊后延续性比较好。数据如果不能持续向前发展,那大数据就会变成死数据,并产生很大的泡沫。但这还不是泡沫的根本!
医疗大数据泡沫的根本在于无法转动商业模式
大数据泡沫的根本在于商业模式无法转动,或者无法转动到比较大的规模就出现了各种各样的问题。产业界都是一轮泡沫向另一轮泡沫不断转移的。在医疗大数据产业中,不管是数据临床诊断还是肿瘤数据分析,目前只有两个比较主要的商业模式:
1. 临床应用通过医院向患者收费,每一个医院和科室相当于一个代理,这样进行层层转移,但是收费并且市场教育成本会非常的高,反之再有地推各种成本情况下,毛利率会很低。
2. 向药企做药物研发、临床观察的数据辅助分析。
但是在国内,原研药的研发实际上的市场份额并不是很高,国内企业对于新药的研发投入并不大,而跨国企业的研发主要在国外总部,所以虽然这一商业模式有向后延续的趋势,但是发展优势并不明显。
同时还有一个很现实的问题,大数据企业可能需要每年花费上亿的成本去做临床数据辅助分析系统,但是药企可能只愿意花费几百万来支付你提供的服务,这就会导致比较严重的入不敷出,而且这不是一个短期的状态而是常态化的。在现阶段,想要让药企大规模的去支付改善药物研发的费用比较难,反而现在单纯做临床观察系统、患者招募的需求更广阔一些。
最后,无论在中国还是美国,医疗大数据产业很难适合创业公司去做,就像很多创新药物只能由礼来、辉瑞等的大型跨国药企来宣布和承受失败……创业公司即使短期内融到巨资来做这个事情,目前也看不到任何规模化收入的可能性。也许2、3 年后情况会有好转,但是资本情况又会有不断的变化,可谓是路漫漫而修远兮……
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15