京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据项目产品选型的五个建议
数据如今对企业来说可谓是头等大事。使用欺诈检测来降低财务风险或是建设推荐系统来改善用户体验,都需要数据来为企业解决这些日益复杂的问题提供支撑。
既然数据已成为企业的重要元素,那我们这几年在数据这个领域都学到了什么?市面上有多种不同的软件模式,包括私有专属软件、云端SAAS软件和开源软件,因此,现在开展大数据分析项目时,开发者、架构师及数据科学家要在众多软件中进行选型,某些软件可能需要昂贵的前期投资或需要投入庞大资源,当然也有一些工具恰到好处,既容易部署又为构建原型(prototype)提供了广泛的支持。
寻找合适的工具对提高项目成功率及避免落入常见陷阱至关重要。以下为在大数据分析项目中进行产品选型的五个建议:
从简单的小规模起步
企业构建数据分析项目常见的最大错误往往是贪大求全。特别是如果项目是从上往下推,执行团队很有可能会被要求构建一套既没有明确成效却又十分复杂的解决方案,造成项目成本高昂且工期很长。
企业不如从规模较小的项目起步,让决策者很快可以看到成效,提升他们对同类项目的信心。利用现代化开源技术,企业不但不用作大量的前期投资,更可以让开发者迅速投入工作,在几天或几周内就能构建出所需的应用程序或是原型。
及早考虑可扩展性
即使只是构建一个框架,也应尽早测试其可扩展性。很多项目之所以失败,全因应用程序在构建时并没有测试其扩展性,也可能是因为其所选技术并不是为处理大数据而设计的。
确保性能测试不是事后的事。先预计在这段时间内将会产生多少数据,并进行测试和评估,构建合适的架构,同时确保当数据量增加并需要横向扩展时,也不会影响业务。
数据的实时性很重要
我们都经历过应用程序或网站没反应或是缓慢的那种痛苦,时至今日,任何不能实时响应的事情我们都不能接受。如果有一个请求没有被及时处理,用户可能很快就会因缺乏耐性而离开该网站或程序,从而导致客户流失及营收下降。
企业要确保所用的软件不但能处理大量数据,还要有能力实时响应这些请求。建议使用具备聚和与地理位置分析功能且能与实时搜索相结合的数据分析软件。
采用灵活的数据模式
现今的系统主要包括结构化和非结构化数据。但不要被那些为结构化图表及数据而设计的关系型数据库所限制。这类数据库很难被加上索引,解析、搜索及分析这些日积月累的大量数据往往很难。
企业应采用具备通用数据结构的软件。很多用于数据分析的软件包括NoSQL数据库及Elasticsearch等均采用JSON作为数据格式,支持文字、数字、字符串、布尔值、数组和哈希等结构化和非结构化数据类型。
挑选开发者易于使用的工具
现今数据流量之多让企业或开发者在应对大数据分析项目时,很难去使用不包含开放API接口的软件。 API接口被用作数据录入、索引及数据分析,这些数据一般来自不同的数据源或是业务系统本身的数据。
企业应提供给开发者一套拥有丰富、开放及资料完整的应用程序API接口,让他们更快速有效地解决问题。久而久之,当项目壮大时,开发者亦能不断创新及改进这套应用程序。
总结
基于以上五点为大数据分析项目挑选最适合的工具,将有助改善项目的价值时间,并确保企业已为长远的成功作好准备。很多如华为、联想、BBC、高盛集团、英国卫报等大企业均已采用这方式,挑选如Elastic Stack这样的开源软件来解决其关键项目。只要方法正确,企业所需的数据分析其实可以很迅速、简单及划算。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20