京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用R建立岭回归和lasso回归
1 分别使用岭回归和Lasso解决薛毅书第279页例6.10的回归问题
例6.10的问题如下:
输入例题中的数据,生成数据集,并做简单线性回归,查看效果 cement <- data.frame(X1 = c(7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10), X2 = c(26, 29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68), X3 = c(6, 15, 8, 8, 6, 9, 17, 22, 18, 4, 23, 9, 8), X4 = c(60, 52, 20, 47, 33, 22, 6, 44, 22, 26, 34, 12, 12), Y = c(78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4)) cement ## X1 X2 X3 X4 Y ## 1 7 26 6 60 78.5 ## 2 1 29 15 52 74.3 ## 3 11 56 8 20 104.3 ## 4 11 31 8 47 87.6 ## 5 7 52 6 33 95.9 ## 6 11 55 9 22 109.2 ## 7 3 71 17 6 102.7 ## 8 1 31 22 44 72.5 ## 9 2 54 18 22 93.1 ## 10 21 47 4 26 115.9 ## 11 1 40 23 34 83.8 ## 12 11 66 9 12 113.3 ## 13 10 68 8 12 109.4 lm.sol <- lm(Y ~ ., data = cement) summary(lm.sol) ## ## Call: ## lm(formula = Y ~ ., data = cement) ## ## Residuals: ## Min 1Q Median 3Q Max ## -3.175 -1.671 0.251 1.378 3.925 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 62.405 70.071 0.89 0.399 ## X1 1.551 0.745 2.08 0.071 . ## X2 0.510 0.724 0.70 0.501 ## X3 0.102 0.755 0.14 0.896 ## X4 -0.144 0.709 -0.20 0.844 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 2.45 on 8 degrees of freedom ## Multiple R-squared: 0.982, Adjusted R-squared: 0.974 ## F-statistic: 111 on 4 and 8 DF, p-value: 4.76e-07 # 从结果看,截距和自变量的相关系数均不显著。 # 利用car包中的vif()函数查看各自变量间的共线情况 library(car) vif(lm.sol) ## X1 X2 X3 X4 ## 38.50 254.42 46.87 282.51 # 从结果看,各自变量的VIF值都超过10,存在多重共线性,其中,X2与X4的VIF值均超过200. plot(X2 ~ X4, col = "red", data = cement)
接下来,利用MASS包中的函数lm.ridge()来实现岭回归。下面的计算试了151个lambda值,最后选取了使得广义交叉验证GCV最小的那个。 library(MASS) ## ## Attaching package: 'MASS' ## ## The following object is masked _by_ '.GlobalEnv': ## ## cement ridge.sol <- lm.ridge(Y ~ ., lambda = seq(0, 150, length = 151), data = cement, model = TRUE) names(ridge.sol) # 变量名字 ## [1] "coef" "scales" "Inter" "lambda" "ym" "xm" "GCV" "kHKB" ## [9] "kLW" ridge.sol$lambda[which.min(ridge.sol$GCV)] ##找到GCV最小时的lambdaGCV ## [1] 1 ridge.sol$coef[which.min(ridge.sol$GCV)] ##找到GCV最小时对应的系数 ## [1] 7.627 par(mfrow = c(1, 2)) # 画出图形,并作出lambdaGCV取最小值时的那条竖直线 matplot(ridge.sol$lambda, t(ridge.sol$coef), xlab = expression(lamdba), ylab = "Cofficients", type = "l", lty = 1:20) abline(v = ridge.sol$lambda[which.min(ridge.sol$GCV)]) # 下面的语句绘出lambda同GCV之间关系的图形 plot(ridge.sol$lambda, ridge.sol$GCV, type = "l", xlab = expression(lambda), ylab = expression(beta)) abline(v = ridge.sol$lambda[which.min(ridge.sol$GCV)])
par(mfrow = c(1, 1)) # 从上图看,lambda的选择并不是那么重要,只要不离lambda=0太近就没有多大差别。 # 下面利用ridge包中的linearRidge()函数进行自动选择岭回归参数 library(ridge) mod <- linearRidge(Y ~ ., data = cement) summary(mod) ## ## Call: ## linearRidge(formula = Y ~ ., data = cement) ## ## ## Coefficients: ## Estimate Scaled estimate Std. Error (scaled) t value (scaled) ## (Intercept) 83.704 NA NA NA ## X1 1.292 26.332 3.672 7.17 ## X2 0.298 16.046 3.988 4.02 ## X3 -0.148 -3.279 3.598 0.91 ## X4 -0.351 -20.329 3.996 5.09 ## Pr(>|t|) ## (Intercept) NA ## X1 7.5e-13 *** ## X2 5.7e-05 *** ## X3 0.36 ## X4 3.6e-07 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Ridge parameter: 0.01473, chosen automatically, computed using 2 PCs ## ## Degrees of freedom: model 3.01 , variance 2.84 , residual 3.18 # 从模型运行结果看,测岭回归参数值为0.0147,各自变量的系数显著想明显提高(除了X3仍不显著) 最后,利用Lasso回归解决共线性问题 library(lars) ## Loaded lars 1.2 x = as.matrix(cement[, 1:4]) y = as.matrix(cement[, 5]) (laa = lars(x, y, type = "lar")) #lars函数值用于矩阵型数据 ## ## Call: ## lars(x = x, y = y, type = "lar") ## R-squared: 0.982 ## Sequence of LAR moves: ## X4 X1 X2 X3 ## Var 4 1 2 3 ## Step 1 2 3 4 # 由此可见,LASSO的变量选择依次是X4,X1,X2,X3 plot(laa) #绘出图
summary(laa) #给出Cp值 ## LARS/LAR ## Call: lars(x = x, y = y, type = "lar") ## Df Rss Cp ## 0 1 2716 442.92 ## 1 2 2219 361.95 ## 2 3 1918 313.50 ## 3 4 48 3.02 ## 4 5 48 5.00 # 根据课上对Cp含义的解释(衡量多重共线性,其值越小越好),我们取到第3步,使得Cp值最小,也就是选择X4,X1,X2这三个变量。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15