用R建立岭回归和lasso回归
1 分别使用岭回归和Lasso解决薛毅书第279页例6.10的回归问题
例6.10的问题如下:
输入例题中的数据,生成数据集,并做简单线性回归,查看效果 cement <- data.frame(X1 = c(7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10), X2 = c(26, 29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68), X3 = c(6, 15, 8, 8, 6, 9, 17, 22, 18, 4, 23, 9, 8), X4 = c(60, 52, 20, 47, 33, 22, 6, 44, 22, 26, 34, 12, 12), Y = c(78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4)) cement ## X1 X2 X3 X4 Y ## 1 7 26 6 60 78.5 ## 2 1 29 15 52 74.3 ## 3 11 56 8 20 104.3 ## 4 11 31 8 47 87.6 ## 5 7 52 6 33 95.9 ## 6 11 55 9 22 109.2 ## 7 3 71 17 6 102.7 ## 8 1 31 22 44 72.5 ## 9 2 54 18 22 93.1 ## 10 21 47 4 26 115.9 ## 11 1 40 23 34 83.8 ## 12 11 66 9 12 113.3 ## 13 10 68 8 12 109.4 lm.sol <- lm(Y ~ ., data = cement) summary(lm.sol) ## ## Call: ## lm(formula = Y ~ ., data = cement) ## ## Residuals: ## Min 1Q Median 3Q Max ## -3.175 -1.671 0.251 1.378 3.925 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 62.405 70.071 0.89 0.399 ## X1 1.551 0.745 2.08 0.071 . ## X2 0.510 0.724 0.70 0.501 ## X3 0.102 0.755 0.14 0.896 ## X4 -0.144 0.709 -0.20 0.844 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 2.45 on 8 degrees of freedom ## Multiple R-squared: 0.982, Adjusted R-squared: 0.974 ## F-statistic: 111 on 4 and 8 DF, p-value: 4.76e-07 # 从结果看,截距和自变量的相关系数均不显著。 # 利用car包中的vif()函数查看各自变量间的共线情况 library(car) vif(lm.sol) ## X1 X2 X3 X4 ## 38.50 254.42 46.87 282.51 # 从结果看,各自变量的VIF值都超过10,存在多重共线性,其中,X2与X4的VIF值均超过200. plot(X2 ~ X4, col = "red", data = cement)
接下来,利用MASS包中的函数lm.ridge()来实现岭回归。下面的计算试了151个lambda值,最后选取了使得广义交叉验证GCV最小的那个。 library(MASS) ## ## Attaching package: 'MASS' ## ## The following object is masked _by_ '.GlobalEnv': ## ## cement ridge.sol <- lm.ridge(Y ~ ., lambda = seq(0, 150, length = 151), data = cement, model = TRUE) names(ridge.sol) # 变量名字 ## [1] "coef" "scales" "Inter" "lambda" "ym" "xm" "GCV" "kHKB" ## [9] "kLW" ridge.sol$lambda[which.min(ridge.sol$GCV)] ##找到GCV最小时的lambdaGCV ## [1] 1 ridge.sol$coef[which.min(ridge.sol$GCV)] ##找到GCV最小时对应的系数 ## [1] 7.627 par(mfrow = c(1, 2)) # 画出图形,并作出lambdaGCV取最小值时的那条竖直线 matplot(ridge.sol$lambda, t(ridge.sol$coef), xlab = expression(lamdba), ylab = "Cofficients", type = "l", lty = 1:20) abline(v = ridge.sol$lambda[which.min(ridge.sol$GCV)]) # 下面的语句绘出lambda同GCV之间关系的图形 plot(ridge.sol$lambda, ridge.sol$GCV, type = "l", xlab = expression(lambda), ylab = expression(beta)) abline(v = ridge.sol$lambda[which.min(ridge.sol$GCV)])
par(mfrow = c(1, 1)) # 从上图看,lambda的选择并不是那么重要,只要不离lambda=0太近就没有多大差别。 # 下面利用ridge包中的linearRidge()函数进行自动选择岭回归参数 library(ridge) mod <- linearRidge(Y ~ ., data = cement) summary(mod) ## ## Call: ## linearRidge(formula = Y ~ ., data = cement) ## ## ## Coefficients: ## Estimate Scaled estimate Std. Error (scaled) t value (scaled) ## (Intercept) 83.704 NA NA NA ## X1 1.292 26.332 3.672 7.17 ## X2 0.298 16.046 3.988 4.02 ## X3 -0.148 -3.279 3.598 0.91 ## X4 -0.351 -20.329 3.996 5.09 ## Pr(>|t|) ## (Intercept) NA ## X1 7.5e-13 *** ## X2 5.7e-05 *** ## X3 0.36 ## X4 3.6e-07 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Ridge parameter: 0.01473, chosen automatically, computed using 2 PCs ## ## Degrees of freedom: model 3.01 , variance 2.84 , residual 3.18 # 从模型运行结果看,测岭回归参数值为0.0147,各自变量的系数显著想明显提高(除了X3仍不显著) 最后,利用Lasso回归解决共线性问题 library(lars) ## Loaded lars 1.2 x = as.matrix(cement[, 1:4]) y = as.matrix(cement[, 5]) (laa = lars(x, y, type = "lar")) #lars函数值用于矩阵型数据 ## ## Call: ## lars(x = x, y = y, type = "lar") ## R-squared: 0.982 ## Sequence of LAR moves: ## X4 X1 X2 X3 ## Var 4 1 2 3 ## Step 1 2 3 4 # 由此可见,LASSO的变量选择依次是X4,X1,X2,X3 plot(laa) #绘出图
summary(laa) #给出Cp值 ## LARS/LAR ## Call: lars(x = x, y = y, type = "lar") ## Df Rss Cp ## 0 1 2716 442.92 ## 1 2 2219 361.95 ## 2 3 1918 313.50 ## 3 4 48 3.02 ## 4 5 48 5.00 # 根据课上对Cp含义的解释(衡量多重共线性,其值越小越好),我们取到第3步,使得Cp值最小,也就是选择X4,X1,X2这三个变量。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03