
用R建立岭回归和lasso回归
1 分别使用岭回归和Lasso解决薛毅书第279页例6.10的回归问题
例6.10的问题如下:
输入例题中的数据,生成数据集,并做简单线性回归,查看效果 cement <- data.frame(X1 = c(7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10), X2 = c(26, 29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68), X3 = c(6, 15, 8, 8, 6, 9, 17, 22, 18, 4, 23, 9, 8), X4 = c(60, 52, 20, 47, 33, 22, 6, 44, 22, 26, 34, 12, 12), Y = c(78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4)) cement ## X1 X2 X3 X4 Y ## 1 7 26 6 60 78.5 ## 2 1 29 15 52 74.3 ## 3 11 56 8 20 104.3 ## 4 11 31 8 47 87.6 ## 5 7 52 6 33 95.9 ## 6 11 55 9 22 109.2 ## 7 3 71 17 6 102.7 ## 8 1 31 22 44 72.5 ## 9 2 54 18 22 93.1 ## 10 21 47 4 26 115.9 ## 11 1 40 23 34 83.8 ## 12 11 66 9 12 113.3 ## 13 10 68 8 12 109.4 lm.sol <- lm(Y ~ ., data = cement) summary(lm.sol) ## ## Call: ## lm(formula = Y ~ ., data = cement) ## ## Residuals: ## Min 1Q Median 3Q Max ## -3.175 -1.671 0.251 1.378 3.925 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 62.405 70.071 0.89 0.399 ## X1 1.551 0.745 2.08 0.071 . ## X2 0.510 0.724 0.70 0.501 ## X3 0.102 0.755 0.14 0.896 ## X4 -0.144 0.709 -0.20 0.844 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 2.45 on 8 degrees of freedom ## Multiple R-squared: 0.982, Adjusted R-squared: 0.974 ## F-statistic: 111 on 4 and 8 DF, p-value: 4.76e-07 # 从结果看,截距和自变量的相关系数均不显著。 # 利用car包中的vif()函数查看各自变量间的共线情况 library(car) vif(lm.sol) ## X1 X2 X3 X4 ## 38.50 254.42 46.87 282.51 # 从结果看,各自变量的VIF值都超过10,存在多重共线性,其中,X2与X4的VIF值均超过200. plot(X2 ~ X4, col = "red", data = cement)
接下来,利用MASS包中的函数lm.ridge()来实现岭回归。下面的计算试了151个lambda值,最后选取了使得广义交叉验证GCV最小的那个。 library(MASS) ## ## Attaching package: 'MASS' ## ## The following object is masked _by_ '.GlobalEnv': ## ## cement ridge.sol <- lm.ridge(Y ~ ., lambda = seq(0, 150, length = 151), data = cement, model = TRUE) names(ridge.sol) # 变量名字 ## [1] "coef" "scales" "Inter" "lambda" "ym" "xm" "GCV" "kHKB" ## [9] "kLW" ridge.sol$lambda[which.min(ridge.sol$GCV)] ##找到GCV最小时的lambdaGCV ## [1] 1 ridge.sol$coef[which.min(ridge.sol$GCV)] ##找到GCV最小时对应的系数 ## [1] 7.627 par(mfrow = c(1, 2)) # 画出图形,并作出lambdaGCV取最小值时的那条竖直线 matplot(ridge.sol$lambda, t(ridge.sol$coef), xlab = expression(lamdba), ylab = "Cofficients", type = "l", lty = 1:20) abline(v = ridge.sol$lambda[which.min(ridge.sol$GCV)]) # 下面的语句绘出lambda同GCV之间关系的图形 plot(ridge.sol$lambda, ridge.sol$GCV, type = "l", xlab = expression(lambda), ylab = expression(beta)) abline(v = ridge.sol$lambda[which.min(ridge.sol$GCV)])
par(mfrow = c(1, 1)) # 从上图看,lambda的选择并不是那么重要,只要不离lambda=0太近就没有多大差别。 # 下面利用ridge包中的linearRidge()函数进行自动选择岭回归参数 library(ridge) mod <- linearRidge(Y ~ ., data = cement) summary(mod) ## ## Call: ## linearRidge(formula = Y ~ ., data = cement) ## ## ## Coefficients: ## Estimate Scaled estimate Std. Error (scaled) t value (scaled) ## (Intercept) 83.704 NA NA NA ## X1 1.292 26.332 3.672 7.17 ## X2 0.298 16.046 3.988 4.02 ## X3 -0.148 -3.279 3.598 0.91 ## X4 -0.351 -20.329 3.996 5.09 ## Pr(>|t|) ## (Intercept) NA ## X1 7.5e-13 *** ## X2 5.7e-05 *** ## X3 0.36 ## X4 3.6e-07 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Ridge parameter: 0.01473, chosen automatically, computed using 2 PCs ## ## Degrees of freedom: model 3.01 , variance 2.84 , residual 3.18 # 从模型运行结果看,测岭回归参数值为0.0147,各自变量的系数显著想明显提高(除了X3仍不显著) 最后,利用Lasso回归解决共线性问题 library(lars) ## Loaded lars 1.2 x = as.matrix(cement[, 1:4]) y = as.matrix(cement[, 5]) (laa = lars(x, y, type = "lar")) #lars函数值用于矩阵型数据 ## ## Call: ## lars(x = x, y = y, type = "lar") ## R-squared: 0.982 ## Sequence of LAR moves: ## X4 X1 X2 X3 ## Var 4 1 2 3 ## Step 1 2 3 4 # 由此可见,LASSO的变量选择依次是X4,X1,X2,X3 plot(laa) #绘出图
summary(laa) #给出Cp值 ## LARS/LAR ## Call: lars(x = x, y = y, type = "lar") ## Df Rss Cp ## 0 1 2716 442.92 ## 1 2 2219 361.95 ## 2 3 1918 313.50 ## 3 4 48 3.02 ## 4 5 48 5.00 # 根据课上对Cp含义的解释(衡量多重共线性,其值越小越好),我们取到第3步,使得Cp值最小,也就是选择X4,X1,X2这三个变量。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26