
JAVA如何与R完美结合起来
为什么要用java调用R?
Java作为一个非常流行的编程语言,具有功能强大和简单易用两个特征。Java语言作为静态面向对象编程语言的代表,极好地实现了面向对象理论,允许程序员以优雅的思维方式进行复杂的编程。但是Java缺乏数据分析以及可视化的能力。但是R语言却是专门为统计而生,R语言近年来发展迅速,可以用来进行机器学习,数据挖掘,数据可视化。 为了弥补这种差距, 我们可以将JAVA与R结合起来,
今天我们来说两种方法,首先第一个,JAVA通过Rserve调用R语言。
一,环境
系统:win10
JDK:1.8
R:3.3.1
eclipse:luna
二.准备工作
在R软件里面安装Rserve包
install.packages("Rserve")
如果你已经安装了这个包就不需要这一步。如果安装过程没有报错就OK。接下来我们就要通过下面语句启动服务:
Rserve()
如果出现下面语句这表示服务已经启动好了:
Starting Rserve...
"D:\PROGRA~1\R\R-33~1.1\library\Rserve\libs\x64\Rserve.exe"
现在我们已经运行Rserve服务器,我们就可以在eclipse中创建一个Java程序,使用Rserve与R进行通信,并在Java代码中调用R的函数。
我创建里一个RserveProject的java工程,然后右击工程名—properties—Java Build Path—Librares—Add External Jar...加载REngine.jar和Rserve.jar两个jar包,我把R装在了D:\Program Files\下,所以那两个包在D:\Program Files\R\R-3.3.1\library\Rserve\java。大家根据自己的实际情况找找。
三.编写Java程序
在下面程序中,我分别直接调用了R中的函数,也调用自己的R脚本。
import org.rosuda.REngine.Rserve.RConnection;
import org.rosuda.REngine.Rserve.RserveException;
import org.rosuda.REngine.REXPMismatchException;;
public class Temp {
public static void main(String[] args) throws REXPMismatchException {
// TODO Auto-generated method stub
RConnection connection = null;
System.out.println("平均值");
try {
//创建对象
connection = new RConnection();
String vetor="c(1,2,3,4)";
connection.eval("meanVal<-mean("+vetor+")");
//System.out.println("the mean of given vector is="+mean);
double mean=connection.eval("meanVal").asDouble();
System.out.println("the mean of given vector is="+mean);
//connection.eval(arg0)
} catch (RserveException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
System.out.println("执行脚本");
try {
connection.eval("source('D:/myAdd.R')");
//此处路径也可以这样写D:\\\\myAdd.R
int num1=20;
int num2=10;
int sum=connection.eval("myAdd("+num1+","+num2+")").asInteger();
System.out.println("the sum="+sum);
} catch (RserveException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
connection.close();
}
}
结果为:
平均值
the mean of given vector is=2.5
执行脚本
the sum=30
其中myAdd.R代码如下:
myAdd<-function(x,y){
sum=x+y
return(sum)
}
四.Reserve的多线程
由于Rserve是以服务器的形式运行,那么它可以同时处理多个请求。 这也就意味着当我们使用命令启动Rserve的实例。
我们从R控制台启动Rserve实例,如下有三个实例。
Rserve(port=5011)
Rserve(port=5012)
Rserve(port=5013)
现在有了这3个独立的实例,这3个线程可以很容易地连接到这3个实例:
//线程1连接到在端口5011上运行的实例
RConnection connection = new RConnection("hostIP_or_hostName",5011);
//线程2连接到在端口5012上运行的实例
RConnection connection = new RConnection("hostIP_or_hostName",5012);
//线程3连接到在端口5013上运行的实例
RConnection connection = new RConnection("hostIP_or_hostName",5013);
第二种方法:
这是一种比较简单方便的方法,这次我们需要写一个简单的R语言脚本,然后通过运行这个R脚本,来打开Rserve服务。这样的话,我们每次运行Java程序之前就不用先打开R,再输入程序打开Rserve服务。这样是不是很简单方便。今天我们要用这种方法,和R语言,画一个简单的词云出来。
首先,我们建一个R脚本:
library(Rserve)
Rserve()</span>
我将它保存成Rserve.R文件,放在了这个目录下(MyScript这是我自己新建的文件夹): D:\Program Files\R\R-3.3.1\MyScript
提示:路径最后不要有中文字符,就是有的时候可能不识别,或包其他错误。
首先我们要导入 包,大家可以查看我的另一篇博文。我们新建一个类,用来初始化Rserve服务。代码如下
package rserve;
import javax.xml.transform.Source;
import org.rosuda.REngine.Rserve.RConnection;
import org.rosuda.REngine.Rserve.RserveException;
/**
* 启动Rserve服务
* @author henry wang
*
*/
public class Rservel {
private static String R_EXE_PATH="D:\\Program Files\\R\\R-3.3.1\\bin\\Rscript.exe";
private static String R_SCRIPT_PATH="D:\\Program Files\\R\\R-3.3.1\\MyScript\\Rserve.R";
public static RConnection getRConnection(){
try {
RConnection rConnection=new RConnection();
return rConnection;
} catch (RserveException e) {
// TODO: handle exception
System.out.println("正在启动Rserve服务......");
try {
Runtime rn=Runtime.getRuntime();
/*
* 不建议写成直接写成rn.exec("R_EXE_PATH R_SCRIPT_PATH"),
*如果这样学的画前面定义的R_EXE_PATH,R_SCRIPT_PATH会提示
* 这两个变量没有用到
* 运行也许会出错,提示错误如下:
* java.io.IOException: Cannot run program "D:\Program": CreateProcess error=2,
*系统找不到指定的文件。
*/
String[] commandArgs={R_EXE_PATH,R_SCRIPT_PATH};
rn.exec(commandArgs);
Thread.sleep(5000);
} catch (Exception e2) {
// TODO: handle exception
e2.printStackTrace();
}
return getRConnection();
}
}
}
说明:R_EXE_PATH 是Rscript.exe或者R.exe的路径,这两个都可以。R_SCRIPT_PATH是R脚本的路径。
package rserve;
import java.awt.Graphics;
import java.awt.Image;
import java.awt.MediaTracker;
import java.awt.Toolkit;
import javax.swing.JFrame;
import org.rosuda.REngine.REXP;
import org.rosuda.REngine.Rserve.RConnection;
public class WordCloud extends JFrame{
private static final long serialVersionUID=1L;
static Image img;
public static void main(String[] args) throws Exception{
// TODO Auto-generated method stub
WordCloud wc=new WordCloud();
REXP xp=wc.getRobj();//获得R对象
wc.PlotDemo(xp,wc);//错误
}
private REXP getRobj() throws Exception{
RConnection c=Rserve.getRConnection();
c.setStringEncoding("utf8");//设置字符编码
//返回R的版本
REXP Rservesion=c.eval("R.version.string");
System.out.println(Rservesion.asString());
System.out.println("\n----------绘图演示--------");
System.out.println("");
REXP xp=c.parseAndEval("jpeg('test.jpg',quality=90)");
c.eval("library(wordcloud)");
c.voidEval("colors=c('red','blue','green','yellow','purple')");
c.parseAndEval(" data(SOTU);wordcloud(SOTU,min.freq=10,colors=colors);dev.off()");
xp=c.parseAndEval("r=readBin('test.jpg','raw',3000*3000);unlink('test.jpg');r");
return xp;
}
public void PlotDemo(REXP xp, JFrame f)throws Exception{
img=Toolkit.getDefaultToolkit().createImage(xp.asBytes());
MediaTracker mediaTracker=new MediaTracker(this);
mediaTracker.addImage(img, 0);
mediaTracker.waitForID(0);
f.setTitle("Test Image");
f.setSize(img.getWidth(null),img.getHeight(null));
f.setDefaultCloseOperation(EXIT_ON_CLOSE);
f.setVisible(true);
}
public void paint(Graphics g){
g.drawImage(img, 0, 0, null);
}
}
c.parseAndEval(" data(SOTU);wordcloud(SOTU,min.freq=10,colors=colors);dev.off()");这个句子的冒号里面都是一些R语句,只不过每句话后面都有一个分号。
运行结果如下:
这样就好了,我们使用java调用R语言就绘制出了一个简单的词云。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29