SPSS详细操作:独立样本四格表的卡方检验
如果我想看不同患者人群的术后复发率有没有差异,怎么办?这时候就需要欢迎我们的统计小助手——卡方检验闪亮登场啦!
卡方检验可是一位重量级选手,凡是涉及到计数资料分布的比较都需要他的帮忙。和t检验一样,卡方检验也会用在成组和配对设计资料分析中,本期我们一起聊聊独立样本四格表的χ2检验。
一、问题与数据
用药物A治疗急性心肌梗死患者198例,24小时内死亡11例,病死率为5.56%,另42例治疗时采用药物B,24小时内死亡6例,病死率为14.29%,提问:两组病死率有无差别?
表1. 两种药物急性心肌梗塞患者治疗后24小时内死亡情况
二、对数据结构的分析
“生存”,还是“死亡”,这是个问题,但更是一个典型的二分类结局指标,我们关注的重点是两种药物治疗后“生存”和“死亡”的分布(或者说病死率)有无差别,由此组成的2*2列联表就是χ2检验中经典的“四格表”(如表1)。
下面一起看看SPSS怎样搞定χ2检验。
三、SPSS分析方法
1. 数据录入
(1) 变量视图
(2) 数据视图
2. 加权个案:选择Data→weight cases→勾选Weight cases by,将频数放入Frequency Variable→OK。因为本例中数据库每一行代表多个观测对象,所以需要对其进行加权处理。
当然,如果数据是以单个观测对象的形式,即每一行代表1个观测对象,则无需加权(如下图)。
3. 选择Analyze→Descriptive Statistics→Crosstabs
4. 选项设置
(1) 主对话框设置:将分组变量Drug放入Row(s)框中→将指标变量Outcome放入Column(s)框中(实际上χ2检验是关注实际和理论频数是否一致,这里Row(s)框和Column(s)框内变量也可以颠倒放,并不影响最终结果)。
(2) Statistics设置:勾选Chi-square,确定使用成组计数资料的卡方检验→Continue
(3) Cells设置:Counts中勾选Observed和Expected,输出实际观测频数和理论频数;Percentages中勾选Row,输出每组转归百分比→Continue→OK
四、结果解读
表2 统计汇总
表2中不仅有服用两种药物后患者实际转归(生存/死亡)的频数和相应百分比,还输出了相应的理论频数(所在行列合计数乘积/总例数)。需要注意的是,这里的理论频数和总例数直接决定了下面卡方检验结果的选择。
表3 卡方检验结果
表3中这么多检验结果,到底看哪一个?不要着急 ,我们一个一个来看:
1、总例数≥40,所有理论频数≥5,看Pearson Chi-Square结果;
2、总例数≥40,出现1个理论频数≥1且<5,χ2检验需进行连续性校正,这时以Continuity Correction结果为准;
3、总例数≥40,至少2个理论频数≥1且<5,看Fisher’s Exact Test结果;
4、总例数<40或者出现理论频数<1,看Fisher’s Exact Test结果。
( SPSS也会友好地在表格下方的注释部分提示是否有理论频数小于5,以及最小的理论频数是多少,方便选择恰当的检验方法)
本例中总例数=240>40,存在1个理论频数=3.0<5,所以需要看Continuity Correction结果,χ2=2.796,P=0.095>0.05。
五、撰写结论
两种药物治疗急性心肌梗塞患者的预后并不相同,A药病死率为5.6%,低于 B药(14.3%),但差异无统计学意义(χ2=2.796,P=0.095)。
六、延伸阅读
1、χ2检验是基于χ2分布的一种假设检验,简单讲就是想看看实际观测数和理论频数偏离程度。比如说,上面提到的例子中服用A药后共观察到187例存活,这里的187例就是“实际观测数”,对应的“理论频数”是187所在行列合计的乘积与总例数的比值,也就是198*223/240=184。所有单元格的实际观测数和理论频数计算出后,可根据如下公式计算χ2,得到相应的P值。
χ2=∑[(实际观测数-理论频数)2/理论频数],ν=(行数-1)*(列数-1)
χ2检验的原假设是实际观测数和理论频数分布一致,如果P<0.05,那么拒绝原假设,认为实际观测数和理论频数分布是不一致的,也就是A药和B药治疗后的转归是不同的。当然有了统计分析软件,我们就不需要这么辛苦的计算啦。
2、如果χ2检验所得P值在0.05左右,或者总例数较小,理论频数较少时,给出的结论一定要谨慎,不要简单给出P>0.05或者P<0.05,靠谱儿的做法是给出明确的P值。另外,利用列联表χ2检验比较不同患者某种治疗结局有无差别时,还应该评估不同组患者是否“同质”。举个例子,患者病情严重程度是否一致,这些特征都可能会影响最终结果的判断,对于这一类问题,可以考虑分层χ2检验,logistic回归进行处理,这些后面我们接着聊~~~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03