SPSS—描述性统计分析—探索性分析
菜单
除了可以计算基本的统计量之外,也可以给出一些简单的检验结果和图形,有助于用户进一步的分析数据。使得用户能够从大量的分析结果之中挖掘到所需要的统计信息。
适用范围
对资料的性质、分布特点等完全不清楚的时候
Analyze -> Descriptive Statistics -> Expore
数据源
ceramics.sav
因变量列表
用于选入待分析的变量
因子列表
用于选择分组变量,根据该变量取值不同,分组分析因变量列表中的变量
标注个案
选择标签变量
统计量
描述性
计算一般的描述性统计量,及指定的均数可信区间
M-估计量
描述集中趋势的统计量,用于稳健估计
界外值
分别输出5个极大值和极小值
百分位数
输出变量5%,10%,25%,50%,75%,90%,95%分位数
绘制
带校验的正态图
选择是否进行正态校验,且是否输出相应的Q-Q图
伸展与级别Levene检验
当选入分组变量时,该功能才被激活,主要用于比较各组之间的离散程度是否一致。在这里可以选择“未转换”,用于方差齐性检验
选项
输出结果
个案处理分析结果
包括观测量、缺失值等信息
描述性统计量
包括:均值、95%置信区间、方差、中位数、标准差、最大最小值、偏度和峰度等信息
集中趋势分布的3种较佳平稳测度
较佳测度之一:中位数等
中位数
与均值和众数大不相同,中位数是依赖于数据的主体部分而不是极值,因此它的值不是过分地受某几个观察值的影响
平稳估计量
如果对数据来源的总体做出某个假设(比如假定服从正态分布),则会有更佳分布位置的估计量,这种估计量称为平稳或稳健测度的估计量
较佳测度之二:修正均值
由于均值深受极端值影响,因此可通过去掉一些远离主体数据的极端值,进而获得一个对于分布位置简单而平稳的估计量
5%修正均值
是通过去掉所有观察值中最大的5%和最小的5%的数据而获得
调整后的均值与中位数可更好的利用数据
较佳测度之三:M估计
将极端值计算在内,而赋予比靠近中央值较小的一个权重,这种方法可借助M估计或采用广义最大似然估计
M-estimators:平稳分布位置的最大似然估计量
Huber的M估计值
Tukey双权重估计值
Hampel重复递减M估计值
Andrew波形估计值
M-估计器
极值
这里用标注个案来标记极值
正态性检验
其中Premium变量对应的K-S检验P值和Shapiro-Wilk检验P值均为0.000,非常显著,应该拒绝原假设。所以,此变量的数据分布不是正态分布。
而Standard数据的分布不是显著的,可以认为是正态分布
在‘探索’里出现的Kolmogorov-Smirnov 检验,它的右上角有一个a 的注释号。它将Kolmogorov-Smirnov 检验改进用于一般的正态性检验。
而在‘非参数检验’里出现的Kolmogorov-Smirnov 检验,是没有经过纠正或改进的。
该正态性检验只能做标准正态检验。
SPSS 规定:当样本含量3≤n≤5000 时,结果以Shapiro—Wilk(W 检验)为难,当样本含量n>5000 结果 以Kolmogorm —Smimov(D检验)为准。
问题:
(1) 在实际应用中常出现检验结果与直方图、正态性概率图不一致,甚至几种假设检验方法结果完全不同的情况。
(2) Shapiro—Wilk 检验(Ⅳ 检验)和经过Lilliefors 显著水平修正的Kolmogorov—Smirnov 检验(D 检验)是用 一个综合指标(顺序统计量Ⅳ 或D)来判定资料的正态性由于两种方法都是用一个指标反映资料的正态性,
所以当资料的正态峰和对称性两个特征有一个不满足正态性要求时,两种方法出现假阴性错误的机率均较 大;而且两种方法的检验统计量都是进行大小排序后得到,所以易受异常值的影响。
(3) Kolmogorov—Smirnov 单一样本检验是根据实际的累计频数分布和理论的累计频数分布的最大差异来检验资料的正态性,可对正态分布进行拟合优度检验。但它并非检验正态性的专用方法,因此它的检验效率是最低的,最容易受样本量和异常值等因素的影响。
方差齐性检验
如上图,Sig > 0.2,并无显著差异。
正态Q-Q图
正态性检验可以通过直观的Q-Q图,进行人工验证。
Q-Q图是一种散点图,对应于正态分布的Q-Q图,就是由标准正态分布的分位数为横坐标,样本值为纵坐标的散点图. 要利用QQ图鉴别样本数据是否近似于正态分布,只需看QQ图上的点是否近似地在一条直线附近,而且该直线的斜率为标准差,截距为均值.
如上图,batch=Standard Q-Q图上的点在一条直线附近,可以认为是正态分布,和正态性检验Lilliefors,Shapiro-Wilk得出的结果一致。
反趋势正态 Q-Q 图
如上图,反趋势正态概率Q-Q图以变量的观测值为X坐标,以变量的Z得分与期望值的偏差为Y坐标。
batch=Standard 图的观测点离期望值很集中,说明符合正态分布。
盒子图
Premiun中有部分异常数据,数据偏大。需要进行异常值检测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03