京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS—描述性统计分析—探索性分析
菜单
除了可以计算基本的统计量之外,也可以给出一些简单的检验结果和图形,有助于用户进一步的分析数据。使得用户能够从大量的分析结果之中挖掘到所需要的统计信息。
适用范围
对资料的性质、分布特点等完全不清楚的时候
Analyze -> Descriptive Statistics -> Expore
数据源
ceramics.sav
因变量列表
用于选入待分析的变量
因子列表
用于选择分组变量,根据该变量取值不同,分组分析因变量列表中的变量
标注个案
选择标签变量
统计量
描述性
计算一般的描述性统计量,及指定的均数可信区间
M-估计量
描述集中趋势的统计量,用于稳健估计
界外值
分别输出5个极大值和极小值
百分位数
输出变量5%,10%,25%,50%,75%,90%,95%分位数
绘制
带校验的正态图
选择是否进行正态校验,且是否输出相应的Q-Q图
伸展与级别Levene检验
当选入分组变量时,该功能才被激活,主要用于比较各组之间的离散程度是否一致。在这里可以选择“未转换”,用于方差齐性检验
选项
输出结果
个案处理分析结果
包括观测量、缺失值等信息
描述性统计量
包括:均值、95%置信区间、方差、中位数、标准差、最大最小值、偏度和峰度等信息
集中趋势分布的3种较佳平稳测度
较佳测度之一:中位数等
中位数
与均值和众数大不相同,中位数是依赖于数据的主体部分而不是极值,因此它的值不是过分地受某几个观察值的影响
平稳估计量
如果对数据来源的总体做出某个假设(比如假定服从正态分布),则会有更佳分布位置的估计量,这种估计量称为平稳或稳健测度的估计量
较佳测度之二:修正均值
由于均值深受极端值影响,因此可通过去掉一些远离主体数据的极端值,进而获得一个对于分布位置简单而平稳的估计量
5%修正均值
是通过去掉所有观察值中最大的5%和最小的5%的数据而获得
调整后的均值与中位数可更好的利用数据
较佳测度之三:M估计
将极端值计算在内,而赋予比靠近中央值较小的一个权重,这种方法可借助M估计或采用广义最大似然估计
M-estimators:平稳分布位置的最大似然估计量
Huber的M估计值
Tukey双权重估计值
Hampel重复递减M估计值
Andrew波形估计值
M-估计器
极值
这里用标注个案来标记极值
正态性检验
其中Premium变量对应的K-S检验P值和Shapiro-Wilk检验P值均为0.000,非常显著,应该拒绝原假设。所以,此变量的数据分布不是正态分布。
而Standard数据的分布不是显著的,可以认为是正态分布
在‘探索’里出现的Kolmogorov-Smirnov 检验,它的右上角有一个a 的注释号。它将Kolmogorov-Smirnov 检验改进用于一般的正态性检验。
而在‘非参数检验’里出现的Kolmogorov-Smirnov 检验,是没有经过纠正或改进的。
该正态性检验只能做标准正态检验。
SPSS 规定:当样本含量3≤n≤5000 时,结果以Shapiro—Wilk(W 检验)为难,当样本含量n>5000 结果 以Kolmogorm —Smimov(D检验)为准。
问题:
(1) 在实际应用中常出现检验结果与直方图、正态性概率图不一致,甚至几种假设检验方法结果完全不同的情况。
(2) Shapiro—Wilk 检验(Ⅳ 检验)和经过Lilliefors 显著水平修正的Kolmogorov—Smirnov 检验(D 检验)是用 一个综合指标(顺序统计量Ⅳ 或D)来判定资料的正态性由于两种方法都是用一个指标反映资料的正态性,
所以当资料的正态峰和对称性两个特征有一个不满足正态性要求时,两种方法出现假阴性错误的机率均较 大;而且两种方法的检验统计量都是进行大小排序后得到,所以易受异常值的影响。
(3) Kolmogorov—Smirnov 单一样本检验是根据实际的累计频数分布和理论的累计频数分布的最大差异来检验资料的正态性,可对正态分布进行拟合优度检验。但它并非检验正态性的专用方法,因此它的检验效率是最低的,最容易受样本量和异常值等因素的影响。
方差齐性检验
如上图,Sig > 0.2,并无显著差异。
正态Q-Q图
正态性检验可以通过直观的Q-Q图,进行人工验证。
Q-Q图是一种散点图,对应于正态分布的Q-Q图,就是由标准正态分布的分位数为横坐标,样本值为纵坐标的散点图. 要利用QQ图鉴别样本数据是否近似于正态分布,只需看QQ图上的点是否近似地在一条直线附近,而且该直线的斜率为标准差,截距为均值.
如上图,batch=Standard Q-Q图上的点在一条直线附近,可以认为是正态分布,和正态性检验Lilliefors,Shapiro-Wilk得出的结果一致。
反趋势正态 Q-Q 图
如上图,反趋势正态概率Q-Q图以变量的观测值为X坐标,以变量的Z得分与期望值的偏差为Y坐标。
batch=Standard 图的观测点离期望值很集中,说明符合正态分布。
盒子图
Premiun中有部分异常数据,数据偏大。需要进行异常值检测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15