
大数据时代下,百货行业如何革命
进入互联网、大数据时代,中国百货行业发生了翻天覆地变化,以前“一铺养三代”,现在街上到处都是旺铺出兑,更不用说各种百货商场的状况了。究其原因,中国百货行业外有国内经济增长减速、社会零售总额增长放缓以及网络购物发展的困境,内有相较购物中心自营能力不足、千店一面同质化竞争严重问题,深处“内忧外患”之中。
革命的目的,是为了让一切变好,是为了过得更好。大数据时代,革命的途径,就是怎么利用大数据。我们知道,很多百货公司纷纷走上了自我革命的道路,成为大数据应用的探索者:王府井百货推出了“王府井大数据平台”、新世界百货利用VIP数据进行圈层营销,天虹百货打造“天虹微店’开启全渠道购物,银泰百货“全场铺设WIFI”等等。
恰好,前些天帆软传说哥与该行业的某集团的IT负责人进行了一些交流,了解到他们所做变革,毕竟传说哥在数据展示和分析圈混了几年,今天就抛砖引玉,分享一些自己的见解,商超行业如何应用大数据。
对于百货商超公司而言,要用收集、应用什么数据?我想100%的人都会不假思索说用户标签和交易行为,也就是用户画像了。的确是的,像百度推广、腾讯广点通、LBS广告、京东猜你喜欢等等,广告都是智能的,这都是对用户标签、行为数据的分析和追踪,然后推送给他们合适的广告信息,这样的广告往往效果最好,因为切中了用户当前或者潜在的需求。
第二个问题,企业为什么要用大数据呢?为了挣钱嘛,为了挣更多的钱嘛。上面讲到大数据对于用户的价值,确实能推动很多产品的销售,带来很多销售额。但这不够啊!传说哥的东家帆软公司,为什么能发展这么快?原因就是帆软是做报表软件和商业智能软件的,该领域市场大,而企业购买这些软件都是为了自身运营。这就引出了第二个大数据的价值,对于企业运营的作用。没有数据的支撑,你很难知道“昨天发生了什么、为什么会发生、今天发生了什么、明天又将发生什么”,也不知道企业战略战术执行如何;有了数据的支撑,业务运转情况一览无遗,工作效率大大提高,管理和决策将更加轻松自然。
大数据时代的革命行动,说透了就是商超百货要做两件事,一个是用户画像系统,一个是企业运营数据分析中心。
首先是用户画像系统。
其核心是用计算机理解的“词语”,去描绘一个人,一般都是用“标签”+“权重”来做用户画像。与用户相关的数据,分为为静态数据和动态数据。静态数据主要是指他的个人标签,属性,比如他的年龄、职业、性别、收入、地区、婚姻状况、爱好、特征、消费能力、消费周期等。动态数据主要是他在商场内留下的行为数据,常见要素是时间、地点、行为,比如消费时间、所买物品、试衣间试了几次衣服等。收集用户数据的方式很多,如会员卡,如卖场wifi等。
当整个画像系统建立起来后,就是这样的一个场景:顾客使用手机在卖场停留的时间,物品的条码扫描情况,商场收集到这些数据,把这些数据上传到云端,就能更好的为顾客做推荐。例如,你喜欢西餐,你在西餐区买什么东西,喜欢什么品牌,在店里两三次的消费习惯等这些数据都会被系统记录下来,通过手机微信以及其它大数据结合以后,就会为你量身定做一套专属于你的一个DM单。现在的情况是所有人收到的DM单都一样,酱油,醋,萝卜,白菜,不管你喜欢不喜欢一股脑都丢给你,以后情况可能就不会是这样了,你喜欢某个品牌,这个品牌也许会通过大数据被“找”出来,单独推送给你,无论你什么时间到那都会有优惠。
其次是企业运营数据中心,也就是数据分析系统,可以准确实时的向领导层、中间管理层反映集团运营状况,如销售情况、库存情况、利润情况、人力资源情况等,辅助管理决策。
同时,业务人员查看卖场营运数据的场地和设备限制问题也将解决,业务人员可以在任何时间,通过内网或外网,在手机,平板等设备上了解实时的卖场营运数据,比如商品销量情况,畅销还是滞销,还有营运的一些基础数据,异常报表类数据。还比如管理人员在巡店的过程中,可以通过手机扫描商品条形码或二维码,就可以从移动端查看到这个商品在我们整个企业每家店的情况,包括他是跟哪个供应商合作,是多少钱的合作,多个批次商品的销售情况,以及一些合作的具体细节。数据分析系统需要ETL工具、BI工具等来建设实现,这里有几个关键点:一是对多源数据、多数据结构的支持,可以进行多数据源关联;二是性能优越,大数据量大并发的情况下扛得住;三是支持多样化的数据展示方式和交互效果,比如图表移动应用等;四是系统的可扩展性强,维护简单,如新需求可以及时响应,或者业务人员可以自己制作报表。
最后,再表述一个观点:任何的改革,都是自上而下推进的,比如商鞅变法,比如海尔的重生,没有上层领导的强力支持,改革就是走走形式,最后无疾而终。
所以商超百货行业要变革,首要是领导层观念的变革,认可时代的变化,认可数据的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28