京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下,百货行业如何革命
进入互联网、大数据时代,中国百货行业发生了翻天覆地变化,以前“一铺养三代”,现在街上到处都是旺铺出兑,更不用说各种百货商场的状况了。究其原因,中国百货行业外有国内经济增长减速、社会零售总额增长放缓以及网络购物发展的困境,内有相较购物中心自营能力不足、千店一面同质化竞争严重问题,深处“内忧外患”之中。
革命的目的,是为了让一切变好,是为了过得更好。大数据时代,革命的途径,就是怎么利用大数据。我们知道,很多百货公司纷纷走上了自我革命的道路,成为大数据应用的探索者:王府井百货推出了“王府井大数据平台”、新世界百货利用VIP数据进行圈层营销,天虹百货打造“天虹微店’开启全渠道购物,银泰百货“全场铺设WIFI”等等。
恰好,前些天帆软传说哥与该行业的某集团的IT负责人进行了一些交流,了解到他们所做变革,毕竟传说哥在数据展示和分析圈混了几年,今天就抛砖引玉,分享一些自己的见解,商超行业如何应用大数据。
对于百货商超公司而言,要用收集、应用什么数据?我想100%的人都会不假思索说用户标签和交易行为,也就是用户画像了。的确是的,像百度推广、腾讯广点通、LBS广告、京东猜你喜欢等等,广告都是智能的,这都是对用户标签、行为数据的分析和追踪,然后推送给他们合适的广告信息,这样的广告往往效果最好,因为切中了用户当前或者潜在的需求。
第二个问题,企业为什么要用大数据呢?为了挣钱嘛,为了挣更多的钱嘛。上面讲到大数据对于用户的价值,确实能推动很多产品的销售,带来很多销售额。但这不够啊!传说哥的东家帆软公司,为什么能发展这么快?原因就是帆软是做报表软件和商业智能软件的,该领域市场大,而企业购买这些软件都是为了自身运营。这就引出了第二个大数据的价值,对于企业运营的作用。没有数据的支撑,你很难知道“昨天发生了什么、为什么会发生、今天发生了什么、明天又将发生什么”,也不知道企业战略战术执行如何;有了数据的支撑,业务运转情况一览无遗,工作效率大大提高,管理和决策将更加轻松自然。
大数据时代的革命行动,说透了就是商超百货要做两件事,一个是用户画像系统,一个是企业运营数据分析中心。
首先是用户画像系统。
其核心是用计算机理解的“词语”,去描绘一个人,一般都是用“标签”+“权重”来做用户画像。与用户相关的数据,分为为静态数据和动态数据。静态数据主要是指他的个人标签,属性,比如他的年龄、职业、性别、收入、地区、婚姻状况、爱好、特征、消费能力、消费周期等。动态数据主要是他在商场内留下的行为数据,常见要素是时间、地点、行为,比如消费时间、所买物品、试衣间试了几次衣服等。收集用户数据的方式很多,如会员卡,如卖场wifi等。
当整个画像系统建立起来后,就是这样的一个场景:顾客使用手机在卖场停留的时间,物品的条码扫描情况,商场收集到这些数据,把这些数据上传到云端,就能更好的为顾客做推荐。例如,你喜欢西餐,你在西餐区买什么东西,喜欢什么品牌,在店里两三次的消费习惯等这些数据都会被系统记录下来,通过手机微信以及其它大数据结合以后,就会为你量身定做一套专属于你的一个DM单。现在的情况是所有人收到的DM单都一样,酱油,醋,萝卜,白菜,不管你喜欢不喜欢一股脑都丢给你,以后情况可能就不会是这样了,你喜欢某个品牌,这个品牌也许会通过大数据被“找”出来,单独推送给你,无论你什么时间到那都会有优惠。
其次是企业运营数据中心,也就是数据分析系统,可以准确实时的向领导层、中间管理层反映集团运营状况,如销售情况、库存情况、利润情况、人力资源情况等,辅助管理决策。
同时,业务人员查看卖场营运数据的场地和设备限制问题也将解决,业务人员可以在任何时间,通过内网或外网,在手机,平板等设备上了解实时的卖场营运数据,比如商品销量情况,畅销还是滞销,还有营运的一些基础数据,异常报表类数据。还比如管理人员在巡店的过程中,可以通过手机扫描商品条形码或二维码,就可以从移动端查看到这个商品在我们整个企业每家店的情况,包括他是跟哪个供应商合作,是多少钱的合作,多个批次商品的销售情况,以及一些合作的具体细节。数据分析系统需要ETL工具、BI工具等来建设实现,这里有几个关键点:一是对多源数据、多数据结构的支持,可以进行多数据源关联;二是性能优越,大数据量大并发的情况下扛得住;三是支持多样化的数据展示方式和交互效果,比如图表移动应用等;四是系统的可扩展性强,维护简单,如新需求可以及时响应,或者业务人员可以自己制作报表。
最后,再表述一个观点:任何的改革,都是自上而下推进的,比如商鞅变法,比如海尔的重生,没有上层领导的强力支持,改革就是走走形式,最后无疾而终。
所以商超百货行业要变革,首要是领导层观念的变革,认可时代的变化,认可数据的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13