京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下,百货行业如何革命
进入互联网、大数据时代,中国百货行业发生了翻天覆地变化,以前“一铺养三代”,现在街上到处都是旺铺出兑,更不用说各种百货商场的状况了。究其原因,中国百货行业外有国内经济增长减速、社会零售总额增长放缓以及网络购物发展的困境,内有相较购物中心自营能力不足、千店一面同质化竞争严重问题,深处“内忧外患”之中。
革命的目的,是为了让一切变好,是为了过得更好。大数据时代,革命的途径,就是怎么利用大数据。我们知道,很多百货公司纷纷走上了自我革命的道路,成为大数据应用的探索者:王府井百货推出了“王府井大数据平台”、新世界百货利用VIP数据进行圈层营销,天虹百货打造“天虹微店’开启全渠道购物,银泰百货“全场铺设WIFI”等等。
恰好,前些天帆软传说哥与该行业的某集团的IT负责人进行了一些交流,了解到他们所做变革,毕竟传说哥在数据展示和分析圈混了几年,今天就抛砖引玉,分享一些自己的见解,商超行业如何应用大数据。
对于百货商超公司而言,要用收集、应用什么数据?我想100%的人都会不假思索说用户标签和交易行为,也就是用户画像了。的确是的,像百度推广、腾讯广点通、LBS广告、京东猜你喜欢等等,广告都是智能的,这都是对用户标签、行为数据的分析和追踪,然后推送给他们合适的广告信息,这样的广告往往效果最好,因为切中了用户当前或者潜在的需求。
第二个问题,企业为什么要用大数据呢?为了挣钱嘛,为了挣更多的钱嘛。上面讲到大数据对于用户的价值,确实能推动很多产品的销售,带来很多销售额。但这不够啊!传说哥的东家帆软公司,为什么能发展这么快?原因就是帆软是做报表软件和商业智能软件的,该领域市场大,而企业购买这些软件都是为了自身运营。这就引出了第二个大数据的价值,对于企业运营的作用。没有数据的支撑,你很难知道“昨天发生了什么、为什么会发生、今天发生了什么、明天又将发生什么”,也不知道企业战略战术执行如何;有了数据的支撑,业务运转情况一览无遗,工作效率大大提高,管理和决策将更加轻松自然。
大数据时代的革命行动,说透了就是商超百货要做两件事,一个是用户画像系统,一个是企业运营数据分析中心。
首先是用户画像系统。
其核心是用计算机理解的“词语”,去描绘一个人,一般都是用“标签”+“权重”来做用户画像。与用户相关的数据,分为为静态数据和动态数据。静态数据主要是指他的个人标签,属性,比如他的年龄、职业、性别、收入、地区、婚姻状况、爱好、特征、消费能力、消费周期等。动态数据主要是他在商场内留下的行为数据,常见要素是时间、地点、行为,比如消费时间、所买物品、试衣间试了几次衣服等。收集用户数据的方式很多,如会员卡,如卖场wifi等。
当整个画像系统建立起来后,就是这样的一个场景:顾客使用手机在卖场停留的时间,物品的条码扫描情况,商场收集到这些数据,把这些数据上传到云端,就能更好的为顾客做推荐。例如,你喜欢西餐,你在西餐区买什么东西,喜欢什么品牌,在店里两三次的消费习惯等这些数据都会被系统记录下来,通过手机微信以及其它大数据结合以后,就会为你量身定做一套专属于你的一个DM单。现在的情况是所有人收到的DM单都一样,酱油,醋,萝卜,白菜,不管你喜欢不喜欢一股脑都丢给你,以后情况可能就不会是这样了,你喜欢某个品牌,这个品牌也许会通过大数据被“找”出来,单独推送给你,无论你什么时间到那都会有优惠。
其次是企业运营数据中心,也就是数据分析系统,可以准确实时的向领导层、中间管理层反映集团运营状况,如销售情况、库存情况、利润情况、人力资源情况等,辅助管理决策。
同时,业务人员查看卖场营运数据的场地和设备限制问题也将解决,业务人员可以在任何时间,通过内网或外网,在手机,平板等设备上了解实时的卖场营运数据,比如商品销量情况,畅销还是滞销,还有营运的一些基础数据,异常报表类数据。还比如管理人员在巡店的过程中,可以通过手机扫描商品条形码或二维码,就可以从移动端查看到这个商品在我们整个企业每家店的情况,包括他是跟哪个供应商合作,是多少钱的合作,多个批次商品的销售情况,以及一些合作的具体细节。数据分析系统需要ETL工具、BI工具等来建设实现,这里有几个关键点:一是对多源数据、多数据结构的支持,可以进行多数据源关联;二是性能优越,大数据量大并发的情况下扛得住;三是支持多样化的数据展示方式和交互效果,比如图表移动应用等;四是系统的可扩展性强,维护简单,如新需求可以及时响应,或者业务人员可以自己制作报表。
最后,再表述一个观点:任何的改革,都是自上而下推进的,比如商鞅变法,比如海尔的重生,没有上层领导的强力支持,改革就是走走形式,最后无疾而终。
所以商超百货行业要变革,首要是领导层观念的变革,认可时代的变化,认可数据的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27