京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据产业遭遇垄断:拿数据的多贡献数据的少
在技术的推动下,大数据已不仅仅是一种应用工具,而是撬动经济增长的“生产力”,催生了体量巨大的新兴产业。业内专家指出,大数据已成为支撑社会有效运行的战略资源。目前我国亟须在数据融合、立法、安全方面完善顶层设计,为大数据产业的健康发展奠定基础。
大数据催生新兴业态
近年来中国大数据产业不断向纵深发展。一方面,产业初具规模。据易观国际统计,2015年我国大数据市场规模达102亿元,2017年有望达到170亿元。另一方面,大数据孕育了诸多新兴业态,激发了不同行业的活力。券商申万宏源的报告分析称,10年后大数据产业可撬动万亿元级的GDP发展。目前,大数据推动下势头强劲的当属三大领域:人工智能、大数据交易、智慧城市建设。
香港科技大学计算机科学及工程学系主任杨强表示,人工智能概念冷寂多年,近年来异军突起,是由于移动互联网的发展产生了大量数据,为人工智能发展的算法训练提供了条件。
目前,各类数据尚未充分融合,因此诞生了大数据交易的业态以满足这一市场需求。北京、贵州、武汉、西安等地相继建立了大数据交易平台。目前,规模较大的是北京和贵阳的交易平台。
2008年,IBM提出“智慧地球”理念,引发了中国智慧城市建设的热潮。大数据带动的智慧城市市场涵盖交通、旅游、医疗、教育等领域。在交通方面,打车软件使用量、使用频率远远超过此前出租车预约服务平台,其运作原理就是供需大数据的优化分配。在旅游景区管理方面,全国多个景点已经采用了电信运营商数据监控人流分布,避免人流密集导致的危险事件。
“前瞻产业研究院”估计,“十三五”期间,在移动互联网发展、大数据产业支持的情况下,智慧城市市场规模有望达4万亿元。
三重力量推动经济增长
如今,大数据不仅是经济“富矿”,更是战略资源。国务院去年印发的《促进大数据发展行动纲要》明确指出,数据已成为国家基础性战略资源。“十三五”规划纲要更是利用一章专门阐述了实施国家大数据战略的思路。
中国社会科学院信息化研究中心秘书长姜奇平表示,应从战略高度理解大数据对于经济增长的意义。
首先,大数据为创业创新提供了机遇。据业内估算,全国的大数据公司已超过了500家,分布在北京的最多,贵阳、武汉等推动大数据产业的城市也是创业重镇。根据大数据研究机构“数据猿”统计,2016年上半年,全球大数据行业共计发生157起投融资事件,中国发生了97起,超过总量的一半。
大数据分析服务公司神策数据创始人兼CEO桑文锋告诉记者,大数据创业之所以火热,一方面是由于技术条件成熟,另一方面是在经济转型升级的情况下,企业增长压力陡升,希望借助数据精准营销、高效生产。
其次,大数据为欠发达地区创造了赶超契机。以贵州为例,经济并不发达,却是首个获批建设国家级大数据综合试验区的地区。今年贵州省政府工作报告明确提出“把大数据作为全省‘弯道取直’、后发赶超的战略引擎。”
贵州省政府提供的数据显示,贵州省如今共有大数据电子信息产业企业1849家,今年上半年新增664家,同比增长60.92%。今年上半年,大数据核心业态、关联业态、衍生业态共实现产值868.89亿元。河北张家口也大力支持大数据产业,打造了京北云谷大数据管理基地、张北云联数据中心等大数据基地。
第三,大数据助力政府治理能力的提高,客观上为经济增长减少了阻力、提供了“润滑剂”。如天津建成运用大数据的智慧型“审计监督一张网”管理系统,实现对财政资金和公共资金等的实时监督;咸阳市政府和亚信数据公司合作,建立了识别诈骗获取医保行为的模型,2015年为咸阳政府节省了3000万元的财政开支。
产业健康发展需完善顶层设计
大数据虽然对经济发展而言意义重大,然而产业刚刚起步,仍有诸多挑战。
首先,企业“垄断”数据现象突出。BAT三大巨头凭借其固有的互联网优势,掌握了大量的数据。根据易观国际数据显示,阿里和腾讯的第三方支付服务占据了中国市场的九成。但BAT体系并不开放,如高德地图被阿里巴巴收购之后,不再向外界公开开放地图数据。国家工商总局也曾表示,个别互联网巨头不愿配合监管分享数据。
其次,数据非法交易猖獗。山东出现两起针对高校新生的电信诈骗案,便涉及数据非法交易利用。除了传统的非法数据兜售外,借助技术手段盗取信息的现象日益增多。记者发现,不少网站都出售“移动终端信息采集仪”,利用无线技术快速提取手机电话簿、通信记录、短消息等数据。
第三,数据“孤岛”林立、融合困难。政府与企业都面临这一难题。“拿走数据的多,贡献数据的少。”贵阳大数据交易所执行总裁王叁寿表示,不少企业以保护商业机密或节省数据整理成本等为理由,不愿意交易自身数据。部分政府部门也缺乏数据公开的动力,有的是因“懒政”而让数据沉睡,有的则是利用数据已经开展商业化应用,因此不愿共享。北京市经信委自2013年起推动建设北京市政务数据资源网,至今仍有多家政府部门不配合提供数据。
第四,相关法律体系尚不健全。对于个人数据隐私保护、数据权属、政府数据公开等问题,尚无明确规定,基本处于监管缺失的状态。中国政法大学传播法中心研究员朱巍介绍,目前对个人数据的保护,大多依照2012年通过的“关于加强网络信息保护的决定”,远不能应对实际需求。王叁寿表示,数据交易平台在运行中也有数据权属不明的困惑,期待法律明确交易规则和红线,让企业有法可依。
第五,大数据产业对外技术依赖现象严重,安全堪忧。中国工程院院士邬贺铨表示,发达国家,尤其是美国,大数据产业链非常完整,软硬件能力均领先全球。而中国在芯片、硬件、云计算等方面则较为薄弱,芯片尤其依赖进口,或成为未来产业掣肘。
业内人士建议,我国应加强顶层设计,完善立法,规范数据交易行为,鼓励数据互联互通,将数据公开共享纳入政府部门考核,同时加大力度攻坚克难,在芯片、云计算等大数据的关键领域取得突破,建成健康、安全的大数据产业环境。记者 王晓洁 王新明
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21