
大数据在面向客户层面“能做”和“不能做”的事情
当下,我们正处于数据爆炸的时代,全球的数据量正在以每18个月翻一倍的惊人速度增长,世界正在高速数字化。大数据也是当下各行各业都在谈论的话题,某些数据分析师甚至扬言:如果可以实时、精确的捕捉一切数据,并且有足够高效的算法与储存设备,大数据可以分析并解决一切问题。窃以为,这样的说法太过绝对,现实情况并非如此。大数据并非是无所不能的。
笔者在这里试图从应用的角度分析一下电信行业大数据能做的和不能做的事情,而对于业务层面的“能”与“不能”。
大数据在面向客户层面“能做”的事情:
1、完善客户画像,洞察客户特征:
拥有更全面的客户数据后,能更逼近客户的真实情况。大数据因其强大的数字记忆功能,在一定程度上能做到比客户自己还要更了解客户,具有“读心术”功能,这个容易理解;
2、发现行为模式的DNA,预测客户将发生的动作:
法国数学家泊松说过:一旦我们承认人类行为是随机的,它突然之间就可以被预测了。《爆发》作者艾伯特·拉斯洛·巴拉巴西据此认为:依据泊松分布规律推断,人类行为93%是可以预测的。大数据的核心功能就是关联预测,比如识别离网客户在离网前的行为模式DNA,就能推测出所有在网客户在某个时期的离网率。类似的还有客户换机时间、偏好机型的预测等等。
3、识别客户需求偏好,开展个性化服务:
还是围绕客户来说,大数据能发现客户的兴趣偏好、渠道偏好等,在规则引擎的实时触发作用下,相应的触点就能即时捕捉到机会,触发完成相应的动作,进行个性化的精准服务与营销,做到“应时应景”、“正中客户下怀”,这对于提高营销效率、客户感知肯定是大有裨益的,当然这里面还要注意让客户比较舒服的接受触点的服务,不要让客户觉得我们是在利用他们的隐私在做事情,这里面是讲究技巧的。
大数据在面向客户层面“不能做”的事情:
大数据的确能记录客户的各种属性特征、行为轨迹,这些数据也确实反映了客户的操作和使用行为,但是所思并不完全就是所想,客户的行为也不能完全反映其真实意图。
1、大数据不能“算”出客户的创意和想象:
大数据来源于现实,但是人类的许多想法并非来源于现实,创造性的思维与想象往往是天马行空、超越现实,因此《大数据时代》作者克托·迈尔·舍恩伯格直言:创意和想象,用大数据是“算“不出来的。
2、大数据及时很智能也无法替代客户思维:
大数据或许能帮助客户做出一些决策方案,但最终选择客户哪个方案、做出何种动作,最终决定权还是在客户自己手中。人类的思维过程、内心的真实想法是大数据不能够完全测算出来的。人类的思维、决策镶嵌在时间序列和社会背景之中,但数据是不能读懂这些背景的,也读不懂这些背景之后的一些潜规则,因而无法洞悉人类思维的浮现过程。即使是一部普通的小说,数据分析也无法解释其中的思路脉络,显见大数据是不能替代人类的思考的。
3、大数据不能预测超越人类认知范围的事情:
大数据的核心功能就是预测,但是大数据无法预测毫无先兆、超越人类认知极限的事情,这类事情通常被称为“黑天鹅”。大数据是基于历史数据来预测未来的,但当历史不可掌握时,大数据也是无计可施的;
再者,大数据在采集、处理过程中难免被融入数据分析师的价值观和倾向性,这会让数据往往并非是原始客观的,会影响最后的分析结果,而真实的“黑天鹅”隐藏于无形之中,是很难被发现的;
另外,著名思想、《黑天鹅:如何应对不可知的未来》的作者纳西姆·塔勒布指出,随着我们掌握的数据越来越多,可以发现的统计上显著的相关关系也就越来越多,这些相关关系中,有很多都是没有实际意义的,在真正解决问题时可能将人引入歧途。
4、大数据无法描述客户的感情:
大数据另外一个局限性在于它很难表现和描述客户的感情。大数据在处理人类情感、社会关系、前后关联等问题的时候,表现往往不尽如人意。大数据只能告诉我们客户在做什么,而不能告诉我们客户在做的时候是怎么想的、背景是怎样的,或者客户在做的时候有什么样的情绪波动。所以,大数据往往是不能直达客户心智空间,理解客户拥有何种价值观的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18