
零售行业的数据挖掘之路
对于沃尔玛、家乐福等零售大超市而言,每天都有很多客户通过会员卡进行购买,不断积累了很多销售数据,如何利用这些数据,从数据中挖掘金矿,值得每位商家去思考。本文从个人的角度去谈一下如何使用数据挖掘帮助零售商提升生意,让数据真正地去指导企业经营,最大限度地发挥数据提供商业决策的作用。
一、开展零售商的数据挖掘项目,必须要重点提供以下几个表的关键信息:
客户表:卡号、发卡店ID、城市、号码、邮箱、企业或个人标识、企业名称、所在行业、地址等。
销售表:卡号、销售店ID、产品名称、产品价格、销售数量、销售日期、销售金额、折扣等信息。
产品表:产品名称、产品ID、建议零售价、实际销售价、一级类别、二级类别、三级类别、四级类别、品牌等信息。
零售店表:店ID、店名、所属城市、店等级等。
其中销售表、产品表、客户表比较重要,而产品表梳理对数据分析及数据挖掘团队而言,是做好项目的关键,必须要耗费大量的时间。
二、开展会员制能够帮助企业采集更多会员数据,更有利于开展数据挖掘的工作,同时也有利于培养客户忠诚度。
在实施会员制的时候,必须要特别注意两个关键信息的采集:会员卡ID、客户联系号码或者邮箱,因为这两个关键信息对信息采集及后期的精准营销有很大的帮助作用。而微信、微博等社交媒体的横行,若零售商能够通过相关活动让客户关注企业的微信、微博,对培养客户忠诚度也是有很大的帮助。
三、与零售商明确数据挖掘目的,能够让分析团队与零售商之间获得更大的信任,同时有利于项目的顺利开展。
成熟的分析团队,比较关注零售商的商业出发点,从客户商业价值出发,抓住客户关注点,一点一点地做好相应的落地分析工作。
客户最常见想让数据帮助其解答的几大问题:
如何唤醒沉默客户,让其转化为活跃客户?
如何让活跃的客户购买更多的产品,最大程度地释放其价值?
哪些客户是重点客户群?有什么样的特征?
哪些重点客户流失了?为什么流失?后期怎样开展挽留手段
……
四、结合5W1H分析法开展零售分析与挖掘。
What:销售情况怎么样?有多少用户?来了多少次?每次消费多少钱?买了什么东西…….
Where:哪些门店销售最好?为什么呢?(交通、地区等) …….
When:哪个月份销售得最好?哪个节日是销售高峰期…….
Who:是哪些客户?有什么样的特征?偏好买哪些产品?产品规格是怎么样的…….
Why:为什么买哪些产品?为什么买那么多?会不会继续购买…….
How:怎样唤醒客户?怎样提高客户重购?怎么进行交叉销售?怎样帮助铺货……
五、协助零售商开展营销活动设计、营销活动执行、营销评估与优化。
因为数据挖掘是一个闭环的流程,不是撰写挖掘报告、输出营销客户名单就是项目成功的,必须协助零售商开展相应的营销设计、营销活动执行、营销评估及优化工作。从而确保数据挖掘有效落地,为客户真实产生商业价值,扩大生意规模。
营销活动设计常有:优惠打折、派发试用装、赠送礼品、多倍积分等,可以通过不同的细分客户群有针对性地开展不同的营销活动,并计算不同群体及不同活动的投入产出比,便于后期不断优化数据挖掘规则。
六、通过数据开展客户细分,明确各个群体的特征。
对于零售数据而言,必须要深入零售行业两大客户群:企业及个人。企业客户的特征和个人客户的特征有很大的区别。
企业特征主要表现:采购量比较大,经常进行团购或批发,销售量和销售额都比较大,为零售商的重点客户群。对企业数据挖掘,需要深入了解企业的所属行业、采购额度、采购规律、采购产品偏好、是否流失、流失的原因调查等信息,有助于帮助零售商开展相应的营销策略。
对于个人,则需要关注哪些是活跃客户、哪些是新增客户、客户价值是怎样的、哪些节日是重点高峰期、偏好的产品是哪些等等,这些有助于零售商开展销售、备货等工作。
七、关键成果固化IT系统,实现数据挖掘成果固化落地。
对于零售商而言,数据挖掘是个不大不小的投入,对于关键的成果输出,总希望能够把成果规则进行IT固化,实现自动代替手工操作,这个时候经常需要搭建一个成果固化模块或系统,让数据挖掘能够最大限度帮助企业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07