京公网安备 11010802034615号
经营许可证编号:京B2-20210330
理想VS现实的数据分析流程
数据分析师的工作流程,理想情况下,可以分为四个步骤。
1、提取数据。利用SQL语言从数据仓库中提取你分析需要的字段。所以数据分析师一定要对SQL语言相对比较精通。
2、处理数据。提取出来的数据,一般都要进行一些预处理。例如:对缺失值、异常值进行处理、数据进行转换(例如:文字转换成数值,男->1)、数据离散(例如把年龄根据分析的目标分为不同的年龄段)。
3、分析数据。通过作图、进行基本统计,分析数据异常背后的发生了什么。许多时候你需要用到各种各样的模型,例如:聚类,分析会员的类型,不同类型的会员有什么特点。你可能会把数据放在EXCEL、SAS、SPSS等上进行分析。
4、分析报告。数据分析的结果最终一般都会以报告的形式呈现。在分析报告中,根据数据进行问题进行描述,或者说发现问题的所在,同样的通过数据你找到解决问题的办法或者方向,说明你的观点。
实际工作流程
但是现实与理想总是存在那么、那么、那么大的差距,在实际工作中,数据分析是一个循环、迭代的过程(如图2)
在你处理数据的时候,你有可能发现你提的数据有问题,可能是缺少字段、或者时间不对。或者发现数据的逻辑有问题,在写SQL的时候可能出现重复数据。
在进行数据分析步骤后,你可能发现,根据分析的问题,你可能需要提取更多的数据来进行支持。特别对数据分析是针对探索性的问题时候。
有分析数据的时候,你可能发现,你的数据预处理没有达到目的,例如你的年龄分段可能之前是按5岁来进行等距分隔的,现在你希望是按等箱进行分析隔,或者你希望按用户的所处阶段(学生、职场新人、白领、结婚、有小孩……)从而你需要又回到前面那个步聚。
甚至在你完成分析告诉后,你会收到这样的需要说,我觉得某个问题可能需要从其它维度进行分析,从而更深入的了解这个问题,这个时间又回到定义问题的阶段。
所以数据分析不是一蹴而就的事情,而是一个迭代、循环的过程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27