京公网安备 11010802034615号
经营许可证编号:京B2-20210330
BI系统应用组织思路和数据分析模式
BI商业智能软件一般都会提供若干数据整合、数据查询、分析与评价、数据可视化及数据分享的手段,但是在BI项目的构建与实施过程中,如果不按照一定的应用组织思路、数据分析模式及分析流程使用这些工具或手段,呈现给最终用户的将是独立的工具集和离散的分析内容,BI系统的整体应用效果将大打折扣。同时,最终用户也了解数据分析模式及数据分析流程方面的一些常用理论和方法,以便形成自己的分析内容组织思路,从而有效开展数据决策分析工作。这方面目前已有多种卓有成效的理论及实践体系,本文基于既往经历的典型BI/DW项目实施经验及对BI软件规划研发和实施经验,给出一种BI系统中的数据分析内容及分析流程组织思路。
1. 整体应用模式
在商业智能项目(DW/BI项目)中,通过梳理和优化现有的指标、报表体系和分析体系,同时整合主要的业务系统数据(业务核心支撑系统、财务系统、HR系统、手工维护的数据如行业数据、竞争对手数据等),从而建立面向总部和子公司的业务及IT等部门,集中使用、管理和维护的BI商业智能系统,以强化信息共享、业务分析、辅助管理决策工作。
在系统构建思路(系统整体应用模式)方面,面向数据分析的BI商业智能系统构建工作应达到如下目标:

BI商业智能系统分析应用整体组织思路
2. 数据分析模式
在数据分析的原理及模式方面,BI商业智能系统可采取PDCA管理循环理论的分析问题的模式,PDCA管理循环理论起初应用于质量检查与保障优化领域,后来在精细化管理及数据分析与决策领域卓有成效。

BI商业智能系统PDCA分析模式及流程
应用在商业智能项目(BI/DW类)中时,PDCA管理循环理论的P、D、C、A四个英文字母所代表的意义如下:
1)P(Plan)——计划
包括方针和目标的确定以及活动计划的制定,包括业务发展目标(goal),中期计划(plan),年度、季度及月度预算等(budget)。
计划环节的内容触发了BI商业智能系统应当具有导入并集成计划与预算等相关数据的能力这一要求,而计划及预算的制定工作,一般则是通过在专项的计划与预算管理系统中进行。也有个别BI厂商基于自定义的填报方案为客户提供计划和预算的下发与上报等管理功能。
2)D(DO)——执行
执行就是具体运作,实现计划中的内容。在BI商业智能系统需要对及时、准确的反应业务的现状提供必要的、充分的手段,包括围绕业务整体状况及各个业务面构建的Dashboard、报表、查询、预警及其他数据分析及可视化手段。
有比较才能明了现状,有参照才能进行比较。因此BI商业智能系统还应该提供来自内部、外部的参照体系,比如计划数据、历史数据、标杆数据、竞争数据等,以便对业务现状的健康程度有足够的参照依据。
3)C(Check)——检查
就是要检查并总结执行计划的结果,分清哪些对了,哪些错了,明确效果,找出问题。
在BI商业智能系统中,应提供相应的对比和评价手段,如各类计划的达成情况分析、标杆分析、综合绩效评价、EVA评价等手段,以便对一个业务周期的效果进行分析与评价。
该部分的分析粒度应有所提高(如沿着时间、人员等维度),分析的范围相应缩窄,结合管理及业务现状有针对性对总体及关键业务环节设立专项检查与评价手段,检查评价的内容一般集中在业务效率及财务表现等方面。
4)A(Action)——处理
对上文Check环节检查的结果进行处理,管理人员通过仔细分析内在原因之后对检车结果认可、否定或调整改进相关参数及结果。并利用有效的结果针对性的开展相关商务政策及管理措施等。
比如,在既往实施的多个经销商网络管理商业智能项目中,Action环节落实为相应销售政策、奖罚措施及总部向各经销商、代理商的利润返还计划,同时也落实为对下一轮业务目标计划数据的调整。
3. 数据分析流程
面对一个具体的数据分析需求时,分析人员在BI商业智能系统中综合利用各种手段解决问题的典型分析流程示意如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31