
BI系统应用组织思路和数据分析模式
BI商业智能软件一般都会提供若干数据整合、数据查询、分析与评价、数据可视化及数据分享的手段,但是在BI项目的构建与实施过程中,如果不按照一定的应用组织思路、数据分析模式及分析流程使用这些工具或手段,呈现给最终用户的将是独立的工具集和离散的分析内容,BI系统的整体应用效果将大打折扣。同时,最终用户也了解数据分析模式及数据分析流程方面的一些常用理论和方法,以便形成自己的分析内容组织思路,从而有效开展数据决策分析工作。这方面目前已有多种卓有成效的理论及实践体系,本文基于既往经历的典型BI/DW项目实施经验及对BI软件规划研发和实施经验,给出一种BI系统中的数据分析内容及分析流程组织思路。
1. 整体应用模式
在商业智能项目(DW/BI项目)中,通过梳理和优化现有的指标、报表体系和分析体系,同时整合主要的业务系统数据(业务核心支撑系统、财务系统、HR系统、手工维护的数据如行业数据、竞争对手数据等),从而建立面向总部和子公司的业务及IT等部门,集中使用、管理和维护的BI商业智能系统,以强化信息共享、业务分析、辅助管理决策工作。
在系统构建思路(系统整体应用模式)方面,面向数据分析的BI商业智能系统构建工作应达到如下目标:
BI商业智能系统分析应用整体组织思路
2. 数据分析模式
在数据分析的原理及模式方面,BI商业智能系统可采取PDCA管理循环理论的分析问题的模式,PDCA管理循环理论起初应用于质量检查与保障优化领域,后来在精细化管理及数据分析与决策领域卓有成效。
BI商业智能系统PDCA分析模式及流程
应用在商业智能项目(BI/DW类)中时,PDCA管理循环理论的P、D、C、A四个英文字母所代表的意义如下:
1)P(Plan)——计划
包括方针和目标的确定以及活动计划的制定,包括业务发展目标(goal),中期计划(plan),年度、季度及月度预算等(budget)。
计划环节的内容触发了BI商业智能系统应当具有导入并集成计划与预算等相关数据的能力这一要求,而计划及预算的制定工作,一般则是通过在专项的计划与预算管理系统中进行。也有个别BI厂商基于自定义的填报方案为客户提供计划和预算的下发与上报等管理功能。
2)D(DO)——执行
执行就是具体运作,实现计划中的内容。在BI商业智能系统需要对及时、准确的反应业务的现状提供必要的、充分的手段,包括围绕业务整体状况及各个业务面构建的Dashboard、报表、查询、预警及其他数据分析及可视化手段。
有比较才能明了现状,有参照才能进行比较。因此BI商业智能系统还应该提供来自内部、外部的参照体系,比如计划数据、历史数据、标杆数据、竞争数据等,以便对业务现状的健康程度有足够的参照依据。
3)C(Check)——检查
就是要检查并总结执行计划的结果,分清哪些对了,哪些错了,明确效果,找出问题。
在BI商业智能系统中,应提供相应的对比和评价手段,如各类计划的达成情况分析、标杆分析、综合绩效评价、EVA评价等手段,以便对一个业务周期的效果进行分析与评价。
该部分的分析粒度应有所提高(如沿着时间、人员等维度),分析的范围相应缩窄,结合管理及业务现状有针对性对总体及关键业务环节设立专项检查与评价手段,检查评价的内容一般集中在业务效率及财务表现等方面。
4)A(Action)——处理
对上文Check环节检查的结果进行处理,管理人员通过仔细分析内在原因之后对检车结果认可、否定或调整改进相关参数及结果。并利用有效的结果针对性的开展相关商务政策及管理措施等。
比如,在既往实施的多个经销商网络管理商业智能项目中,Action环节落实为相应销售政策、奖罚措施及总部向各经销商、代理商的利润返还计划,同时也落实为对下一轮业务目标计划数据的调整。
3. 数据分析流程
面对一个具体的数据分析需求时,分析人员在BI商业智能系统中综合利用各种手段解决问题的典型分析流程示意如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29