
揭秘大数据是如何融入并改变我们的生活
随着互联网以及各种智能设备的发展,人们的行为、位置、生理特征等等,无时无刻不在生成数据被这些设备所采集,然后通过网络源源不断的传输,在计算机上将有型的数据转化为无形的财富,融入人们的生活每个角落。
曾 经有这样一个事情,美国明尼苏达地区有一男子向一家零售商店的店长投诉,称该公司最近给他十几岁的女儿邮寄婴儿服装和孕妇服装的优惠券。店长大方的向他道 了歉。后来这个女孩的确怀孕了。可见大数据的无所不在,这家商店通过分析女儿购买无味湿纸巾和补镁药品的记录就猜到了。
有人把大数据形容为未来世界的石油,有人宣称掌握大数据的人可以像上帝一样俯瞰整个世界,美国政府甚至已经把对大数据的研究上升为国家战略。衣、食、住、行,大数据都能派上用场。大数据海量、多变、多样,与传统数据不可同日而语。
百货行业精准的广告投放
对零售业来说,大数据来自于消费者在数字世界的痕迹——网购记录、社交网络的行踪的集合,它们为理解消费者的行为提供了依据。比如,在网上买了一些衣服,在之后的一段时间,网页两侧的广告栏里不断出现与购买的衣服类似的服装的广告。
美 国的百货店Kohl’s,曾贴出告示,让消费者进入商店后用手机搜索Kohl’s的折扣信息。当我溜达到某个柜台时,一张刚才搜索过但没买的商品的折扣券 就会发到我的手机上。这当然会让商店卖出商品的几率增加,因为消费者在消费现场更容易被促销广告打动;据统计,70%的人会更乐于在这时收到折价券。这样 既不会对消费者造成困扰,又可以使销售量上升。
食品行业个性化的定制
大 数据在食品行业的应用悄然兴起。于是Co.Design版块的可视化数据设计师格斯·文茨瑞克(Gus Wezerek)和作家马克·威尔逊(Mark Wilson)与一家食品业资讯公司Food Genius一起合作,研究了8万8千份菜单和5千9百万个菜品制作出了这份美国各州最有特色的食品图表。
图表显示出每个州最有特色、独一无二的菜品。图表中还体现出了各地区5大类特别的饮食爱好。Food Genius还可以告诉餐馆什么样的描述最吸引客人,可以提升价格。什么样的配料组合可以最大化利润。
大数据寻找人们最爱的房屋
谷歌住房搜索查询量变化可对住房市场发展趋势进行预测,得益于大数据分析的成功运用。前些年,有机构根据搜索量,对于不同地区的美国人喜欢的房屋进行了统计,调查中也出现了一些让人意想不到的结果。
比如康涅狄格州滑雪度假屋的搜索超过了科罗拉多等州,佛罗里达“顶层公寓”的搜索量也高于纽约。这些数据可以帮助房屋中介和地产商们知道人们更愿意住什么样的房屋,便可以投其所好的推荐和建造。
大数据带来出行新体验
对于汽车巨头福特公司,大数据则是在图纸设计出来之前就发挥了作用。新产品开发团队想知道新款休旅车的后门应该做成手动打开还是还是脚踏电动后门。用传统方式调查,结果不明朗。于是福特团队从社交网络上搜集大量信息后发现,人们都喜欢电动后门,这就成了福特的决策依据。
说 到出行一定离不开地图,位于纽约的Citimap开发的社交地图为该领域带来新的活力,它展示的是一个基于社会关系的地图,用户可以在Citimap APP上创造自己的地图并与朋友分享,情侣可以创造他们的幽会地点,买手们可以创建购物地图,美食爱好者可以创造美食地图等等。与O2O相比,这样的地图 数据更鲜活,更有针对性。
可以说我们正在经历着大数据的时代,是一次重大的时代转 型,其信息风暴正在变革着人们的生活、工作和思维。在这场革新中我们会遇到困难,比如数据安全,隐私问题。但随着各项制度的明确,政府的推动和企业的自 律,相信在我们未来的生活中,感受到更多的是大数据为我们生活带来的便捷和舒适。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30