
深挖大数据金矿
大数据的本质特征就是“大”。究竟“多大”才算“大”?“大”不是一个简单的数量,而是一个多维的无限的变量。概括起来说,“大”是一个五“V”空间:第一个维度是数量(Vol-ume),主要表现为数据量的快速增大;第二个维度是速度(Veiocity),主要表现为数据增长的速度在加快;第三维度是数据的多样性(Variety),主要表现为新的数据来源和新的数据种类的增加;第四个维度是数据的价值(Value),主要表现为对这些数据的使用和挖掘产生的价值;第五个维度,也是最重要的一个“V”,就是“数聚”(Variable),它使前面四个“V”的数据发生几何级数的变化,从而让数据实现从量变到质变的飞跃。
正如一位美国记者在一篇文章中写到的,大数据是什么并不重要,重要的是大数据正在改变人对世界的看法。在大数据时代,人获取信息的方式、交往或交友的方式、生活方式、生产方式、思维方式、社会组织管理方式都将被跨界、跨代颠覆式改变。
大数据是新的科技革命与新的产业革命交叉融合的引爆器,大数据让发达地区与欠发达地区站在同一个起跑线上。贵州发展大数据,是倒逼政府改革,推进产业转型的有益探索,是坚守发展和生态“两条底线”,发挥后发优势,实现后发赶超和绿色崛起的创新战略,也是新常态下东部与西部、沿海与内地、发达地区与欠发达地区经济的再平衡。这种再平衡将引发中国经济结构的深度调整,重塑中国经济版图。
全球化开放平台 引领“中国数谷”贵阳崛起
贵州商报:贵阳为何提出建立大数据战略重点实验室,实验室的建立有何实际意义。
连玉明:大数据战略重点实验室是根据贵州省委省政府、贵阳市委市政府发展大数据战略部署设计,在贵州省科技厅支持下,由贵阳市人民政府与北京市科学技术委员会共建的跨学科、专业性、国际化、开放型的跨区域研究平台,它依托贵州大学贵阳创新驱动发展战略研究院组建和运行。这是继建立中关村贵阳科技园、北京贵阳大数据应用展示中心之后京筑创新驱动区域合作又一重大成果,是国家实验室管理机制的一次创新实践,是贵州、贵阳发展大数据的重要里程碑。
大数据战略重点实验室是一个全球化的开放平台。实验室聚集国内外大数据相关专业研究者、管理者和决策者,搭建跨区域协作创新平台、专业化决策咨询平台、网络化成果转化平台和国际化合作交流平台,有助于创新资源和创新人才在贵阳聚合,引领“中国数谷”在贵阳崛起。
大数据战略重点实验室立足全球大数据发展趋势和中国大数据发展实践,以大数据发展的重大理论和现实问题为主攻方向,加强大数据发展全局性、战略性、前瞻性研究和咨询,建设具有较大影响力和国际知名度的大数据高端战略智库,奋力打造中国大数据发展思想和战略策源地。
跨界 跨代 跨区域 五大研究策源中国大数据发展战略
贵州商报:大数据战略重点实验室在做什么样的研究,怎么来服务和助推贵阳大数据产业的发展?实验室研究成果如何落地。
连玉明:大数据战略重点实验室的建立是从理论创新为突破口的。《块数据— 大数据时代真正到来的标志》《DT时代—从“互联网+”到“大数据×”》《创新驱动力— 中国数谷的崛起》三个专著的出版,标志着大数据战略重点实验室在贵州率先启航。基于此,大数据战略重点实验室以五大着力点开展研究及其成果转化:
一是着眼全球大数据发展趋势和中国大数据发展实践,建立全球大数据理论信息中心,建设中国大数据发展规划数据库,出版《全球大数据发展报告》。
二是构建块数据分析理论模型和应用模型,为贵州、贵阳乃至全国发展大数据提供理论支撑和方法支持。
三是研究、编制和发布“大数据指数”,包括大数据发展指数、大数据创新指数、大数据城市指数、大数据社区指数、大数据生活指数和大数据品牌指数。出版年度《大数据蓝皮书》。
四是建立DT空间,搭建众联、众创、众包、众筹创客平台,加快产学研联动,加速成果转化应用,建立国际创客空间。
五是建立“中国DT产业50人论坛”,搭建对外交流平台,打造中国大数据发展的思想和战略策源地。
这五项研究,无论是对贵阳发展大数据,还是中国发展大数据都是一种创新性的、极具前瞻性的研究和探索。必须说明的是,大数据战略重点实验室虽然建在贵州贵阳,但它并不是一个封闭的空间。它更多的是借助北京科技创新中心和国家创新平台的资源,成为一个跨界、跨代、跨区域的开放空间。这个开放空间是全球性的。我们完全超越传统的实验室运行和管理模式,发挥共建优势,整合社会力量,创新市场机制。我们秉承“不求所有、不求所在,但求所用”的原则,可以在北京、上海、杭州、武汉、广州等地建立研究基地,也可以与阿里、腾讯、百度等企业开展联合研究。对贵州、贵阳而言,我们引进的是新思想,转化的是新成果,真正成为助推贵州、贵阳乃至中国大数据发展的战略策源地、人才孵化器、创新试验场、政策先行区。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09