京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学如何将车联网由理想变为现实
数据科学驱动的规范预测分析技术可以改进车联网的安全性和移动性,提供新的车载信息系统,带来一个崭新的环境。
根据美国高速公路安全管理局 (National Highway Traffic Safety Administration,NHTSA)的统计,因为交通事故,仅在2013年美国就有超过三万两千人死亡。对于科技而言,没有比拯救生命更有意义的应用了。车联网代表了主流的革新性道路。目前正是一个转折点,汽车、遥测、信息基础设施等技术以及最重要的思维理念都正在汇集到这一点——让车联网成为现实。
总体而言,术语“车联网(connected vehicles)”强调的是车车互联(vehicle-to-vehicle ,V2V) 以及车与基础设施互联(vehicle-to-infrastructure,V2I)的连接性。车联网在安全方面的好处包括:盲点检测(blind spot detection),行人告警(pedestrian warning)和碰撞规避(collision avoidance)。可以想象一下,汽车将可以与周边环境交互信息,如临近学校、建筑工地、危险转弯和薄冰路面等交通安全信息,并能立即对驾驶员告警。
根据美国高速公路安全管理局的研究,在驾驶员有健全能力的前提下,多达80%的交通事故都可以借助车联网技术来规避。
车联网的目的是为了改进安全性,移动性并减小环境影响,还可以提供车载信息系统的新方式,并带来一系列其他类型的商业利益。可以使驾驶员更安全,更环保,更聪明。还提供了一种方法,将我们的“生活连接”(connected lives)自然延伸到车辆上,这也是最大的物联网(IoT)应用之一。随着汽车款型的年年更迭,越来越多的车辆都配置了传感器,具备远程通信和联网解决方案等。
这些都很伟大,但将这些变为现实所需的基础设施、法规以及各类海量数据等领域仍在发展中。汽车公司尚在应对数据多样性及非结构化特征的挑战中挣扎。大数据的种类、速度和体积等特点使传统的数据库处理技术无法适用。我们需要更先进的大数据平台,如Hadoop,来处理这些海量数据。
汽车公司在数年前就已经开始使用远程数据分析信息处理和传感器数据技术。他们只是不知道如何充分存储利用并获得数据收益。随着大数据及其分析技术的兴起,现在可以实时处理这些海量数据,使其可通过车载信息系统提供可操作的告警信息。基于声学数据科学原理实现的传感数据采集和分析技术可以带来汽车物联网技术的大幅飞跃,这将彻底改变“游戏规则”。
大数据的真正价值应该是创造出独特的客户洞察力。利用来自远程传输、传感器、基础设施和环境的输入数据,选择合适时机通过合适途径将其创造为信息、告警和市场资料等输出数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10