京公网安备 11010802034615号
经营许可证编号:京B2-20210330
新常态下运用大数据
近年来,在全球网络信息技术的飞速发展大背景下,税务系统信息化蹄疾步稳,金税三期、增值税发票管理系统等各类信息化系统逐一登场,税务系统各类信息和数据存量正在酝酿爆炸式增长。随着人类社会开始迈入大数据时代,税务系统的庞大数据积累也为税收治理能力建设带来了全新的机遇和挑战。
一、大数据之路:税收治理能力建设之势(一)“大数据”概念的界定
研究机构Gartner认为“大数据”是需要新的处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据存在4V特点:一是Volume(大量),指数据体量大,大数据集以PB为计量单位;二是Velocity(高速),指获取数据和分析数据的速度快;三是Variety(多样),指数据类型繁多,来源于不同的渠道;四是Value(价值),指通过数据处理发现规律进而产生价值。简而言之,大数据通过对海量数据交换、收集、整合、挖掘,发现前所未见的规律和关联,从而为决策提供依据,产生新的价值。随着政府信息化建设的深入和国家互联网+战略的布局,社会治理方面的数据已开始呈现几何级数增长,为政府解构虚拟世界与现实世界间的复杂关系,获得更为全面和深刻的洞察能力提供了前所未有的潜力和空间。2015年9月,国务院印发《促进大数据发展行动纲要》,系统部署大数据发展工作,国家治理的大数据时代已初露曙光。
(二)大数据时代税收治理能力建设的机遇
从税收收入的增长来看,1994年,全国税收收入总量为5126.88亿元,2014年为103768亿元,增长19.2倍。收入的增长必然伴随税收管理数据量的日益增长。从税收信息化进程来看,全国税务系统已经形成了总局、省局、地市局、区县局的四级广域网,几乎所有的纳税户都被纳入信息化系统加以管理,税务机关掌握了纳税人海量的数据信息。各级税务机关还通过综合治税平台建设,通过工商、海关、银行、电力系统、房产管理部门等掌握了和纳税人生产经营有关的第三方涉税数据。根据2010年前后“金税三期”立项需求的不完全统计,当时全国国税部门的数据量约为18TB左右,地税部门数据量约为13TB左右,并且还在以每月300GB左右的速度递增。这对新常态下的税收治理能力的提升显然是有特殊价值的。
第一,大数据有助于形成税收收入稳定增长的长效机制。在新常态下,我国的经济增长速度从改革开放前32年年均增长9.9%的高速增长转为7%—8%的中高速增长。经济决定税收,近年来,税收收入增速由过去的两位数增长滑落为个位数增长。建立新常态下税收收入稳定增长长效机制的需求日益迫切。因此要进一步深化税收分析,实现税收工作的科学决策。而海量涉税数据与经济、税收密切关联,蕴含潜在规律。运用大数据技术实现对规律的深入洞察将支持税收工作的科学决策;要不断提高税收征管质效。而通过对海量涉税数据的深度整合、分析,有助于预测税收变化,查找薄弱环节,并推动税收风险管理,有助于最大限度地降低税收流失风险。
第二,大数据有助于推进依法治税。依法治税是新常态下做好税收工作的规范保障。依法治税以税收立法为基础,税收立法的科学设计以对法治主体、客体、对象科学和全面的认知为前提。大数据技术将为社会经济发展规律提供更为深刻的洞见和更广阔的视域,提升立法科学性和前瞻性。依法治税以税收执法为保障。大数据急速增长的数据和迅速的数据分析将有利于税务机关快速掌握执法对象的动态,并增强执法的针对性和准确性,迅速研判执法需求和举措;大数据广泛全面的数据来源将为税收执法中的取证提供有效的手段;大数据包含内容的丰富及细致的洞见还将为预防执法当中的腐败及暗箱操作提供了可能。
第三,大数据有助于提升纳税服务水平。在经济新常态下,各种新的经济增长点不断涌现,纳税人的需求日益多样。而大数据为纳税服务适应新常态提供了机遇。基于大数据应用的纳税服务智能化,通过对纳税人行为的主动分析可以为纳税人提供个性化、专业化的服务。借助移动云数据等大数据的环境的产物能进一步丰富纳税服务渠道,为纳税人提供便捷、安全、贴心的涉税信息服务的同时,提高纳税人涉税行为信息采集的广度和精度;构建基于大数据分析的纳税人关系管理系统,运用纳税行为多维度特征分析结果,结合分类分级管理要求为纳税人提供专业化、智能化的服务模式和服务内容;结合大数据的数据开放思维完善纳税信息公开渠道,实现行政及执法信息的公开、透明,使纳税人感到税收公平,增进纳税遵从。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08